Solveeit Logo

Question

Physics Question on Work and Energy

A force (3x2+2x5)N(3x^2 + 2x - 5) \, \text{N} displaces a body from x=2mx = 2 \, \text{m} to x=4mx = 4 \, \text{m}. The work done by this force is _________ J.

Answer

Work done by a variable force is given by:
W=x1x2F(x)dx.W = \int_{x_1}^{x_2} F(x) \, dx.
Here, F(x)=3x2+2x5F(x) = 3x^2 + 2x - 5, x1=2x_1 = 2, and x2=4x_2 = 4.
Substituting:
W=24(3x2+2x5)dx.W = \int_{2}^{4} (3x^2 + 2x - 5) \, dx.

Evaluate the integral:
(3x2+2x5)dx=x3+x25x.\int (3x^2 + 2x - 5) \, dx = x^3 + x^2 - 5x.

Substitute the limits: W=[x3+x25x]24.W = \left[ x^3 + x^2 - 5x \right]_2^4.
At x=4x = 4: W4=43+425(4)=64+1620=60.W_4 = 4^3 + 4^2 - 5(4) = 64 + 16 - 20 = 60. At x=2x = 2:
W2=23+225(2)=8+410=2.W_2 = 2^3 + 2^2 - 5(2) = 8 + 4 - 10 = 2.

The total work done: W=602=58J.W = 60 - 2 = 58 \, \mathrm{J}.

Explanation

Solution

Work done by a variable force is given by:
W=x1x2F(x)dx.W = \int_{x_1}^{x_2} F(x) \, dx.
Here, F(x)=3x2+2x5F(x) = 3x^2 + 2x - 5, x1=2x_1 = 2, and x2=4x_2 = 4.
Substituting:
W=24(3x2+2x5)dx.W = \int_{2}^{4} (3x^2 + 2x - 5) \, dx.

Evaluate the integral:
(3x2+2x5)dx=x3+x25x.\int (3x^2 + 2x - 5) \, dx = x^3 + x^2 - 5x.

Substitute the limits: W=[x3+x25x]24.W = \left[ x^3 + x^2 - 5x \right]_2^4.
At x=4x = 4: W4=43+425(4)=64+1620=60.W_4 = 4^3 + 4^2 - 5(4) = 64 + 16 - 20 = 60. At x=2x = 2:
W2=23+225(2)=8+410=2.W_2 = 2^3 + 2^2 - 5(2) = 8 + 4 - 10 = 2.

The total work done: W=602=58J.W = 60 - 2 = 58 \, \mathrm{J}.