Solveeit Logo

Question

Question: A fixed superconducting cylindrical shell A of radius r = 0.05 m and length $l$ = 100 m initially ha...

A fixed superconducting cylindrical shell A of radius r = 0.05 m and length ll = 100 m initially has uniform current flowing in its azimuthal direction (like a solenoid) with total magnitude I = 500 A. A second superconducting cylindrical shell B of mass m = 2.5 x 10610^{-6} kg, radius r2\frac{r}{2} and length ll initially has no current flowing through it. It is positioned infinitely far away from shell A, and is allowed to move. Shell B is launched towards shell A with initial velocity v. The axes of symmetry of the two cylinders are aligned throughout the subsequent motion of shell B. Determine the velocity v such that shell B will fill the length of the blank space within shell A exactly, after a long time. The value of v2v^2 (in m2/s2m^2/s^2) is:

Answer

3.29

Explanation

Solution

Shell A is a fixed superconducting cylindrical shell with radius rr and length ll, carrying an initial azimuthal current II. The magnetic field inside is BA=μ0I/lB_A = \mu_0 I/l. The self-inductance is LA=μ0πr2/lL_A = \mu_0 \pi r^2/l. The initial magnetic energy is Uinitial=12LAI2U_{initial} = \frac{1}{2} L_A I^2.

Shell B is a superconducting cylindrical shell with radius r/2r/2 and length ll, mass mm. Initially, it is at infinity with no current, so its initial kinetic energy is Kinitial=12mv2K_{initial} = \frac{1}{2} m v^2, and its initial magnetic energy is zero. The initial total energy is Einitial=12mv2+12LAI2E_{initial} = \frac{1}{2} m v^2 + \frac{1}{2} L_A I^2.

When shell B is fully inside shell A, let the currents be IAI_A' and IBI_B'. Due to flux conservation in superconducting shells:

  • Initial flux through A: ΦA,initial=LAI\Phi_{A,initial} = L_A I
  • Final flux through A: ΦA,final=LAIA+MIB\Phi_{A,final} = L_A I_A' + M I_B'

ΦA,final=ΦA,initial    LAIA+MIB=LAI\Phi_{A,final} = \Phi_{A,initial} \implies L_A I_A' + M I_B' = L_A I.

  • Initial flux through B: ΦB,initial=0\Phi_{B,initial} = 0
  • Final flux through B: ΦB,final=LBIB+MIA\Phi_{B,final} = L_B I_B' + M I_A'

ΦB,final=ΦB,initial    LBIB+MIA=0\Phi_{B,final} = \Phi_{B,initial} \implies L_B I_B' + M I_A' = 0.

The self-inductance of B is LB=μ0π(r/2)2/l=LA/4L_B = \mu_0 \pi (r/2)^2/l = L_A/4. The mutual inductance when B is inside A is M=μ0π(r/2)2/l=LB=LA/4M = \mu_0 \pi (r/2)^2/l = L_B = L_A/4.

Substituting LB=M=LA/4L_B = M = L_A/4 into the flux conservation equations:

LAIA+(LA/4)IB=LAI    IA+14IB=IL_A I_A' + (L_A/4) I_B' = L_A I \implies I_A' + \frac{1}{4} I_B' = I (1)

(LA/4)IB+(LA/4)IA=0    IB+IA=0    IB=IA(L_A/4) I_B' + (L_A/4) I_A' = 0 \implies I_B' + I_A' = 0 \implies I_B' = -I_A' (2)

Substitute (2) into (1): IA14IA=I    34IA=I    IA=43II_A' - \frac{1}{4} I_A' = I \implies \frac{3}{4} I_A' = I \implies I_A' = \frac{4}{3} I.

Then IB=43II_B' = -\frac{4}{3} I.

The final state is when shell B is inside A and at rest, so Kfinal=0K_{final} = 0. The final magnetic energy is:

Ufinal=12LA(IA)2+12LB(IB)2+MIAIBU_{final} = \frac{1}{2} L_A (I_A')^2 + \frac{1}{2} L_B (I_B')^2 + M I_A' I_B'

Ufinal=12LA(43I)2+12(LA/4)(43I)2+(LA/4)(43I)(43I)U_{final} = \frac{1}{2} L_A (\frac{4}{3} I)^2 + \frac{1}{2} (L_A/4) (-\frac{4}{3} I)^2 + (L_A/4) (\frac{4}{3} I) (-\frac{4}{3} I)

Ufinal=12LA169I2+18LA169I214LA169I2=169LAI2(12+1814)=169LAI2(4+128)=169LAI238=23LAI2U_{final} = \frac{1}{2} L_A \frac{16}{9} I^2 + \frac{1}{8} L_A \frac{16}{9} I^2 - \frac{1}{4} L_A \frac{16}{9} I^2 = \frac{16}{9} L_A I^2 (\frac{1}{2} + \frac{1}{8} - \frac{1}{4}) = \frac{16}{9} L_A I^2 (\frac{4+1-2}{8}) = \frac{16}{9} L_A I^2 \frac{3}{8} = \frac{2}{3} L_A I^2.

By conservation of energy: Kinitial+Uinitial=Kfinal+UfinalK_{initial} + U_{initial} = K_{final} + U_{final}.

12mv2+12LAI2=0+23LAI2\frac{1}{2} m v^2 + \frac{1}{2} L_A I^2 = 0 + \frac{2}{3} L_A I^2.

12mv2=23LAI212LAI2=(436)LAI2=16LAI2\frac{1}{2} m v^2 = \frac{2}{3} L_A I^2 - \frac{1}{2} L_A I^2 = (\frac{4-3}{6}) L_A I^2 = \frac{1}{6} L_A I^2.

v2=13mLAI2=13m(μ0πr2l)I2v^2 = \frac{1}{3m} L_A I^2 = \frac{1}{3m} (\mu_0 \frac{\pi r^2}{l}) I^2.

Substitute the given values: m=2.5×106m = 2.5 \times 10^{-6} kg, r=0.05r = 0.05 m, l=100l = 100 m, I=500I = 500 A, μ0=4π×107\mu_0 = 4\pi \times 10^{-7} T m/A.

v2=13×2.5×106×(4π×107)×π(0.05)2100×(500)2v^2 = \frac{1}{3 \times 2.5 \times 10^{-6}} \times (4\pi \times 10^{-7}) \times \frac{\pi (0.05)^2}{100} \times (500)^2

v2=17.5×106×4π×107×π×25×104102×25×104v^2 = \frac{1}{7.5 \times 10^{-6}} \times 4\pi \times 10^{-7} \times \frac{\pi \times 25 \times 10^{-4}}{10^2} \times 25 \times 10^4

v2=1067.5×4π×107×π×25×106×25×104v^2 = \frac{10^6}{7.5} \times 4\pi \times 10^{-7} \times \pi \times 25 \times 10^{-6} \times 25 \times 10^4

v2=4×25×257.5×π2×10676+4=25007.5×π2×103v^2 = \frac{4 \times 25 \times 25}{7.5} \times \pi^2 \times 10^{6-7-6+4} = \frac{2500}{7.5} \times \pi^2 \times 10^{-3}

v2=10003×π2×103=π23v^2 = \frac{1000}{3} \times \pi^2 \times 10^{-3} = \frac{\pi^2}{3}.

Using π29.87\pi^2 \approx 9.87: v29.873=3.29v^2 \approx \frac{9.87}{3} = 3.29.