Solveeit Logo

Question

Question: A first-order reaction, \({\text{A}} \to {\text{B}}\) , requires activation energy of \[70{\text{ kJ...

A first-order reaction, AB{\text{A}} \to {\text{B}} , requires activation energy of 70 kJmol170{\text{ kJmo}}{{\text{l}}^{ - 1}}. When a 20%20\% solution of A was kept at 25C25^\circ Cfor 20 min, 25%25\% decomposition took place. What will be the percentage decomposition at the same time in a 30%30\% solution maintained at 40C40^\circ C? Assume that activation energy remains constant in this range of temperature.
A.Decomposition 67.21%67.21\%
B.Decomposition 33.5%33.5\%
C.Decomposition 50%50\%
D.None of these

Explanation

Solution

To answer this question, you should recall the concept of first-order reactions. The first-order decomposition can be defined as the chemical reaction involving only one chemical species, in which the rate of decrease of the concentration of the reactant is directly proportional to its concentration. Radioactivity is an example of the first-order decomposition.

Formula used: K=2.303tlogaaX{\text{K}} = \dfrac{{2.303}}{{\text{t}}}{\text{log}}\dfrac{{\text{a}}}{{{\text{a}} - {\text{X}}}}where K{\text{K}}is the rate coefficient, t{\text{t}}is time, a{\text{a}}is initial concentration and aX{\text{a}} - {\text{X}}is final concentration

Complete step by step solution:
We are given the change, AB{\text{A}} \to {\text{B}} in which 20%20\% solution of A decomposes 25%25\% in 20 minutes at 25oC{25^o}C. Let the amount of solute undergoing decay be a{\text{a}}=20 units.
∴ Amount of solute left aX{\text{a}} - {\text{X}} after 20 minutes will be equal to 75%75\% of initial amount.
20×75100=\Rightarrow 20 \times \dfrac{{75}}{{100}} =15.
Now calculating the rate of reaction using equation (i)
K25 = 2.303tlogaa - X = 2.30320log2015{{\text{K}}_{{\text{25}}}}{\text{ }} = {\text{ }}\dfrac{{2.303}}{{\text{t}}}\log \dfrac{{\text{a}}}{{{\text{a - X}}}}{\text{ }} = {\text{ }}\dfrac{{2.303}}{{20}}{\text{log}}\dfrac{{20}}{{15}}
1.44×102 minute1=0.0144 minute - 1\Rightarrow 1.44 \times {10^{ - 2}}{\text{ minut}}{{\text{e}}^{ - 1}} = 0.0144{\text{ minut}}{{\text{e}}^{{\text{ - 1}}}}.

Now we will calculate the rate coefficient for the second condition i.e. 40C40^\circ C.
Here T1=25C=298K{T_1} = 25^\circ C = 298Kand T2=40oC=313K{T_2} = {40^o}C = 313K
2.303logK40K25 = EaR[T2 - T1T1×T2]2.303{\text{log}}\dfrac{{{{\text{K}}_{{\text{40}}}}}}{{{{\text{K}}_{{\text{25}}}}}}{\text{ = }}\dfrac{{{{\text{E}}_{\text{a}}}}}{{\text{R}}}\,\,\left[ {\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}{ \times }{{\text{T}}_{\text{2}}}}}} \right]
Substituting the values:
2.303logK400.0144 = 70×1038.314[313298313×298]\Rightarrow 2.303{\text{log}}\dfrac{{{{\text{K}}_{{\text{40}}}}}}{{0.0144}}{\text{ }} = {\text{ }}\dfrac{{70 \times {{10}^3}}}{{8.314}}\left[ {\dfrac{{313 - 298}}{{313 \times 298}}} \right]
Solving this, we get:
K40=5.58×102 minute - 1{{\text{K}}_{{\text{40}}}} = 5.58 \times {10^{ - 2}}{\text{ minut}}{{\text{e}}^{{\text{ - 1}}}}

Now, applying equation (i) for the second given condition, let the left out concentration be mmafter 20 minutes.
K40=2.303tloga(aX)\Rightarrow {{\text{K}}_{{\text{40}}}} = \dfrac{{2.303}}{{\text{t}}}{\text{log}}\dfrac{{\text{a}}}{{\left( {{\text{a}} - {\text{X}}} \right)}}
5.58×102=2.30320log30m\Rightarrow 5.58 \times {10^{ - 2}} = \dfrac{{2.303}}{{20}}{\text{log}}\dfrac{{30}}{{\text{m}}}
Solving this:
m=9.83\Rightarrow m = 9.83

\therefore Finally, the percentage of decomposition can be calculated by dividing the final concentration with initial concentration:
ama×100\dfrac{{{\text{a}} - {\text{m}}}}{{\text{a}}} \times 100
309.8330×100=67.2%\Rightarrow \dfrac{{30 - 9.83}}{{30}} \times 100 = 67.2\%

Therefore, we can conclude that the correct answer to this question is option A.

Note: You should know about the difference in molecularity and order of a reaction. The molecularity can be defined as the number of atoms, molecules, or ions which must undergo a collision with each other in a short time interval for the chemical reaction to proceed. Unlike the order of a reaction, it applies to simple reactions only.