Solveeit Logo

Question

Question: A first order reaction is 50% completed in 30 minutes at 27°Cand in 10 minutes at 47°C. Calculate th...

A first order reaction is 50% completed in 30 minutes at 27°Cand in 10 minutes at 47°C. Calculate the activation energy of the reaction.

A

46.8kJmol146.8kJmol^{- 1}

B

43.8kJmol143.8kJmol^{- 1}

C

50.8kJmol150.8kJmol^{- 1}

D

60.8KJmol160.8KJmol^{- 1}

Answer

43.8kJmol143.8kJmol^{- 1}

Explanation

Solution

Let us first calculate k1k_{1} and k2k_{2} at temperatures 27°C and 47°C. We know that t1/2=0.693kt_{1/2} = \frac{0.693}{k} or k=0.693t1/2k = \frac{0.693}{t_{1/2}}

At 27°C, t1/2=30mint_{1/2} = 30\min; k1=0.69330=0.0231k_{1} = \frac{0.693}{30} = 0.0231

At 47°C, t1/2=10mint_{1/2} = 10\min; k2=0.69310=0.0693k_{2} = \frac{0.693}{10} = 0.0693

Now, logk2k1=Ea2.303R[1T11T2]\log\frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R}\left\lbrack \frac{1}{T_{1}} - \frac{1}{T_{2}} \right\rbrack; log0.06930.0231=Ea2.303×8.314[13001320]\log\frac{0.0693}{0.0231} = \frac{E_{a}}{2.303 \times 8.314}\left\lbrack \frac{1}{300} - \frac{1}{320} \right\rbrack

log3=Ea2.303×8.314[20300×320]\log 3 = \frac{E_{a}}{2.303 \times 8.314}\left\lbrack \frac{20}{300 \times 320} \right\rbrack 0.4771=Ea×202.303×8.314×300×320\Rightarrow 0.4771 = \frac{E_{a} \times 20}{2.303 \times 8.314 \times 300 \times 320}

orEa=0.4771×2.303×8.314×300×32020E_{a} = \frac{0.4771 \times 2.303 \times 8.314 \times 300 \times 320}{20} =43848Jmol1or43.8kJmol1= 43848Jmol^{- 1}\text{or}43.8kJmol^{- 1}.