Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

A first order reaction is 5050% complete in 3030 minutes at 27?C27?C and in 1010 minutes at 47?C47?C. The reaction rate constant at 27?C27?C and the energy of activation of the reaction are respectively

A

k=0.0231min1k=0.0231 min^{-1}, EaE_{a} =43.848KJ=43.848 KJ mol1mol^{-1}

B

k=0.017min1k=0.017 min^{-1}, EaE_{a} =52.54KJ=52.54 KJ mol1mol^{-1}

C

k=0.00693min1k=0.00693 min^{-1}, EaE_{a} =43.848KJ=43.848 KJ mol1mol^{-1}

D

k=0.0231min1k=0.0231 min^{-1}, EaE_{a} =28.92KJ=28.92 KJ mol1mol^{-1}

Answer

k=0.0231min1k=0.0231 min^{-1}, EaE_{a} =43.848KJ=43.848 KJ mol1mol^{-1}

Explanation

Solution

Since t1/2{t_{1 /2}} =0.693k=\frac{0.693}{k}, \therefore k=0.693t1/2k=\frac{0.693}{t_{1 /2}} Given : t1/2t_{1 / 2} =30min=30 \,min at 27C27^{\circ}C and t1/2=10t_{1 /2}=10 min at 47C47^{\circ}C \therefore \quad k27Ck_{27^{\circ}C} =0.69330min1=\frac{0.693}{30}min^{-1} =0.0231min1=0.0231 min^{-1} and k47ck_{47^{\circ}c} =0.69310=0.0693min1=\frac{0.693}{10}=0.0693 min^{-1} We know that log k47Ck27C\frac{k_{47^{\circ}C}}{k_{27^{\circ}C}} =Ea2.303R×(T2T1)T2×T1=\frac{E_{a}}{2.303R}\times\frac{\left(T_{2}-T_{1}\right)}{T_{2}\times T_{1}} \therefore \quad EaE_{a} =2.303R×T1×T2(T2T1)log=\frac{2.303 R\times T_{1}\times T_{2}}{\left(T_{2}-T_{1}\right)} log k47ck27c\frac{k_{47^{\circ}c}}{k_{27^{\circ}c}} or\quad EaE_{a} =2.303×8.314×103×300×320(320300)log0.06930.0231=\frac{2.303\times8.314\times10^{-3} \times300\times320}{\left(320-300\right)}log\frac{0.0693}{0.0231} =43.848kJ=43.848 kJ mol1mol^{-1}