Question
Question: (a) Find the value of \(\dfrac{\sec \left( \pi -x \right)\tan \left( \dfrac{\pi }{2}-x \right)\sin \...
(a) Find the value of cot(2π−x)sin(π+x)csc(2π−x)sec(π−x)tan(2π−x)sin(−x)
(b) Prove that cotx.cot2x−cot2x.cot3x−cot3x.cotx=1.
Solution
In this question there are two sub-questions and we will follow different methods for both problems.
In the first problem, we can observe that there are different trigonometric ratios and all the ratios are not in the direct angles. Most of the angles lie in different quadrants so we will use the All Silver Tea Cups method to reduce each ratio. After reducing each ratio, we will substitute in the given equation to get the result.
In the second problem we will consider the L.H.S and take the term cot3x common from the terms −cot2x.cot3x−cot3x.cosx and then we will simplify the obtained equation by using the known formula cot(A+B)=cotA+cotBcotA.cotB−1 and cancel the term which is possible and obtain a result.
Complete step-by-step solution:
Given that, cot(2π−x)sin(π+x)csc(2π−x)sec(π−x)tan(2π−x)sin(−x)
Consider the term sec(π−x), we know that sec(π−θ)=−secθ ⇒sec(π−x)=−secx
Consider the term tan(2π−x), we know that tan(2π−θ)=cotθ ⇒tan(2π−x)=cotx
Consider the term sin(−x), we know that sin(−θ)=−sinθ ⇒sin(−x)=−sinx
Consider the term cot(2π−x), we know that cot(2π−θ)=−cotθ ⇒cot(2π−x)=−cotx
Consider the term sin(π+x), we know that sin(π+θ)=−sinθ ⇒sin(π+x)=−sinx
Consider the term csc(2π−x), we know that csc(2π−θ)=secθ ⇒csc(2π−x)=secx
Now substituting all the values, we have in the given equation
cot(2π−x)sin(π+x)csc(2π−x)sec(π−x)tan(2π−x)sin(−x)=(−cotx).(−sinx).(secx)(−secx).(cotx).(−sinx)∴cot(2π−x)sin(π+x)csc(2π−x)sec(π−x)tan(2π−x)sin(−x)=1
(b) Given that, cotx.cot2x−cot2x.cot3x−cot3x.cotx=1
L.H.S=cotx.cot2x−cot2x.cot3x−cot3x.cotx
Taking cot3x common from the terms −cot2x.cot3x−cot3x.cosx, then we will get
⇒L.H.S=cotx.cot2x−cot3x(cot2x+cotx)
Writing the term cot3x as cot(2x+x) , then we will get
⇒L.H.S=cotx.cot2x−cot3x(cot2x+cotx)⇒L.H.S=cotx.cot2x−cot(2x+x).(cot2x+cotx)
Using the formula cot(A+B)=cotA+cotBcotA.cotB−1 in the above equation, then we will get
⇒L.H.S=cotx.cot2x−(cot2x+cotxcot2x.cotx−1)(cot2x+cotx)
Cancelling the term cot2x+cotx in the above equation, then we will get
⇒L.H.S=cotx.cot2x−(cot2x.cotx−1)
Using the multiplication distribution law a(b+c)=ab+ac in the above equation, then we will get
⇒L.H.S=cotx.cot2x−cot2x.cotx+1⇒L.H.S=1∴L.H.S=R.H.S
Hence proved.
Note: The complete solution for the first part is based on the All Silver Tea Cups Method.
From the above picture, we can find the values of trigonometric ratios for all angles, and this method is simply denoted by All Silver Tea Cups.
For solving the problems like second part we need to know some basic trigonometric formulas which are mentioned below
sin(A+B)=sinA.cosB+cosA.sinBsin(A−B)=sinA.cosB−cosA.sinBcos(A+B)=cosA.cosB−sinA.sinBcos(A−B)=cosA.cosB+sinA.sinB
tan(A+B)=cos(A+B)sin(A+B)tan(A−B)=cos(A−B)sin(A−B)
cot(A+B)=sin(A+B)cos(A+B)cot(A−B)=sin(A−B)cos(A−B)