Solveeit Logo

Question

Question: (a) Find the value of \(\dfrac{\sec \left( \pi -x \right)\tan \left( \dfrac{\pi }{2}-x \right)\sin \...

(a) Find the value of sec(πx)tan(π2x)sin(x)cot(2πx)sin(π+x)csc(π2x)\dfrac{\sec \left( \pi -x \right)\tan \left( \dfrac{\pi }{2}-x \right)\sin \left( -x \right)}{\cot \left( 2\pi -x \right)\sin \left( \pi +x \right)\csc \left( \dfrac{\pi }{2}-x \right)}
(b) Prove that cotx.cot2xcot2x.cot3xcot3x.cotx=1\cot x.\cot 2x-\cot 2x.\cot 3x-\cot 3x.\cot x=1.

Explanation

Solution

In this question there are two sub-questions and we will follow different methods for both problems.
In the first problem, we can observe that there are different trigonometric ratios and all the ratios are not in the direct angles. Most of the angles lie in different quadrants so we will use the All Silver Tea Cups method to reduce each ratio. After reducing each ratio, we will substitute in the given equation to get the result.
In the second problem we will consider the L.H.S and take the term cot3x\cot 3x common from the terms cot2x.cot3xcot3x.cosx-\cot 2x.\cot 3x-\cot 3x.\cos x and then we will simplify the obtained equation by using the known formula cot(A+B)=cotA.cotB1cotA+cotB\cot \left( A+B \right)=\dfrac{\cot A.\cot B-1}{\cot A+\cot B} and cancel the term which is possible and obtain a result.

Complete step-by-step solution:
Given that, sec(πx)tan(π2x)sin(x)cot(2πx)sin(π+x)csc(π2x)\dfrac{\sec \left( \pi -x \right)\tan \left( \dfrac{\pi }{2}-x \right)\sin \left( -x \right)}{\cot \left( 2\pi -x \right)\sin \left( \pi +x \right)\csc \left( \dfrac{\pi }{2}-x \right)}
Consider the term sec(πx)\sec \left( \pi -x \right), we know that sec(πθ)=secθ\sec \left( \pi -\theta \right)=-\sec \theta sec(πx)=secx\Rightarrow \sec \left( \pi -x \right)=-\sec x
Consider the term tan(π2x)\tan \left( \dfrac{\pi }{2}-x \right), we know that tan(π2θ)=cotθ\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta tan(π2x)=cotx\Rightarrow \tan \left( \dfrac{\pi }{2}-x \right)=\cot x
Consider the term sin(x)\sin \left( -x \right), we know that sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta sin(x)=sinx\Rightarrow \sin \left( -x \right)=-\sin x
Consider the term cot(2πx)\cot \left( 2\pi -x \right), we know that cot(2πθ)=cotθ\cot \left( 2\pi -\theta \right)=-\cot \theta cot(2πx)=cotx\Rightarrow \cot \left( 2\pi -x \right)=-\cot x
Consider the term sin(π+x)\sin \left( \pi +x \right), we know that sin(π+θ)=sinθ\sin \left( \pi +\theta \right)=-\sin \theta sin(π+x)=sinx\Rightarrow \sin \left( \pi +x \right)=-\sin x
Consider the term csc(π2x)\csc \left( \dfrac{\pi }{2}-x \right), we know that csc(π2θ)=secθ\csc \left( \dfrac{\pi }{2}-\theta \right)=\sec \theta csc(π2x)=secx\Rightarrow \csc \left( \dfrac{\pi }{2}-x \right)=\sec x
Now substituting all the values, we have in the given equation
sec(πx)tan(π2x)sin(x)cot(2πx)sin(π+x)csc(π2x)=(secx).(cotx).(sinx)(cotx).(sinx).(secx) sec(πx)tan(π2x)sin(x)cot(2πx)sin(π+x)csc(π2x)=1 \begin{aligned} & \dfrac{\sec \left( \pi -x \right)\tan \left( \dfrac{\pi }{2}-x \right)\sin \left( -x \right)}{\cot \left( 2\pi -x \right)\sin \left( \pi +x \right)\csc \left( \dfrac{\pi }{2}-x \right)}=\dfrac{\left( -\sec x \right).\left( \cot x \right).\left( -\sin x \right)}{\left( -\cot x \right).\left( -\sin x \right).\left( \sec x \right)} \\\ & \therefore \dfrac{\sec \left( \pi -x \right)\tan \left( \dfrac{\pi }{2}-x \right)\sin \left( -x \right)}{\cot \left( 2\pi -x \right)\sin \left( \pi +x \right)\csc \left( \dfrac{\pi }{2}-x \right)}=1 \\\ \end{aligned}

(b) Given that, cotx.cot2xcot2x.cot3xcot3x.cotx=1\cot x.\cot 2x-\cot 2x.\cot 3x-\cot 3x.\cot x=1
L.H.S=cotx.cot2xcot2x.cot3xcot3x.cotxL.H.S=\cot x.\cot 2x-\cot 2x.\cot 3x-\cot 3x.\cot x
Taking cot3x\cot 3x common from the terms cot2x.cot3xcot3x.cosx-\cot 2x.\cot 3x-\cot 3x.\cos x, then we will get
L.H.S=cotx.cot2xcot3x(cot2x+cotx)\Rightarrow L.H.S=\cot x.\cot 2x-\cot 3x\left( \cot 2x+\cot x \right)
Writing the term cot3x\cot 3x as cot(2x+x)\cot \left( 2x+x \right) , then we will get
L.H.S=cotx.cot2xcot3x(cot2x+cotx) L.H.S=cotx.cot2xcot(2x+x).(cot2x+cotx) \begin{aligned} & \Rightarrow L.H.S=\cot x.\cot 2x-\cot 3x\left( \cot 2x+\cot x \right) \\\ & \Rightarrow L.H.S=\cot x.\cot 2x-\cot \left( 2x+x \right).\left( \cot 2x+\cot x \right) \\\ \end{aligned}
Using the formula cot(A+B)=cotA.cotB1cotA+cotB\cot \left( A+B \right)=\dfrac{\cot A.\cot B-1}{\cot A+\cot B} in the above equation, then we will get
L.H.S=cotx.cot2x(cot2x.cotx1cot2x+cotx)(cot2x+cotx)\Rightarrow L.H.S=\cot x.\cot 2x-\left( \dfrac{\cot 2x.\cot x-1}{\cot 2x+\cot x} \right)\left( \cot 2x+\cot x \right)
Cancelling the term cot2x+cotx\cot 2x+\cot x in the above equation, then we will get
L.H.S=cotx.cot2x(cot2x.cotx1)\Rightarrow L.H.S=\cot x.\cot 2x-\left( \cot 2x.\cot x-1 \right)
Using the multiplication distribution law a(b+c)=ab+aca\left( b+c \right)=ab+ac in the above equation, then we will get
L.H.S=cotx.cot2xcot2x.cotx+1 L.H.S=1 L.H.S=R.H.S \begin{aligned} & \Rightarrow L.H.S=\cot x.\cot 2x-\cot 2x.\cot x+1 \\\ & \Rightarrow L.H.S=1 \\\ & \therefore L.H.S=R.H.S \\\ \end{aligned}
Hence proved.

Note: The complete solution for the first part is based on the All Silver Tea Cups Method.

From the above picture, we can find the values of trigonometric ratios for all angles, and this method is simply denoted by All Silver Tea Cups.
For solving the problems like second part we need to know some basic trigonometric formulas which are mentioned below
sin(A+B)=sinA.cosB+cosA.sinB sin(AB)=sinA.cosBcosA.sinB cos(A+B)=cosA.cosBsinA.sinB cos(AB)=cosA.cosB+sinA.sinB \begin{aligned} & \sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B \\\ & \sin \left( A-B \right)=\sin A.\cos B-\cos A.\sin B \\\ & \cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B \\\ & \cos \left( A-B \right)=\cos A.\cos B+\sin A.\sin B \\\ \end{aligned}
tan(A+B)=sin(A+B)cos(A+B) tan(AB)=sin(AB)cos(AB) \begin{aligned} & \tan \left( A+B \right)=\dfrac{\sin \left( A+B \right)}{\cos \left( A+B \right)} \\\ & \tan \left( A-B \right)=\dfrac{\sin \left( A-B \right)}{\cos \left( A-B \right)} \\\ \end{aligned}
cot(A+B)=cos(A+B)sin(A+B) cot(AB)=cos(AB)sin(AB) \begin{aligned} & \cot \left( A+B \right)=\dfrac{\cos \left( A+B \right)}{\sin \left( A+B \right)} \\\ & \cot \left( A-B \right)=\dfrac{\cos \left( A-B \right)}{\sin \left( A-B \right)} \\\ \end{aligned}