Solveeit Logo

Question

Mathematics Question on Application of derivatives

A figure consists of a semi-circle with a rectangle on its diameter. Given the perimeter of the figure, find its dimensions in order that the area may be maximum.

A

2Pπ+4\frac{2P}{\pi + 4}, Pπ+4\frac{P}{\pi + 4}

B

Pπ+4\frac{P}{\pi + 4}, Pπ+4\frac{P}{\pi + 4}

C

2Pπ4\frac{2P}{\pi - 4}, Pπ+4\frac{P}{\pi + 4}

D

Pπ4,2Pπ+4\frac{P}{\pi - 4}, \frac{2P}{\pi + 4}

Answer

2Pπ+4\frac{2P}{\pi + 4}, Pπ+4\frac{P}{\pi + 4}

Explanation

Solution

Let ABCDABCD be a rectangle and let the semi-circle be described on side ABAB as diameter. Let AB=2xAB = 2x and AD=2yAD = 2y. Let PP be the perimeter and A A be the area of the figure. Then, P=2x+4y+πx...(i)P = 2x+4y +\pi x \quad...\left(i\right) and, A=(2x)(2y)+πx22..(ii)A= \left(2x\right) \left(2y\right) +\frac{\pi x^{2}}{2} \quad..\left(ii\right) A=4xy+πx22\Rightarrow A= 4xy +\frac{\pi x^{2}}{2} A=x(P2xπx)+πx22\Rightarrow A = x\left( P-2x -\pi x\right) +\frac{\pi x^{2}}{2} [Using (i)\left(i\right)] A=Px2x2πx2+πx22\Rightarrow A = Px-2x^{2} -\pi x^{2}+ \frac{\pi x^{2}}{2} A=Px2x2πx22\Rightarrow A = Px -2x^{2} -\frac{\pi x^{2}}{2} dAdx=P4xπx\Rightarrow \frac{dA}{dx} = P - 4x -\pi x and d2Adx2=4π\frac{d^{2}A}{dx^{2}} = -4 -\pi For maximum or minimum AA, we must have dAdx=0\Rightarrow \frac{dA}{dx} = 0 P4xπx=0\Rightarrow P-4x-\pi x = 0 x=Pπ+4\Rightarrow x= \frac{P}{ \pi +4} Clearly, d2Adx2=4π<0\frac{d^{2}A}{dx^{2}} = -4 -\pi < 0 for all values of xx. Thus, AA is maximum when x=Pπ+4x =\frac{P}{\pi+4} . Putting x=Pπ+4x= \frac{P}{\pi +4} in (i)\left(i\right) we get y=2P2(π+4)y= \frac{2P}{2\left(\pi +4\right)}. so, dimentions of the figure are 2x=2Pπ+42x = \frac{2P}{\pi +4} and 2y=Pπ+42y = \frac{P}{\pi +4 }.