Solveeit Logo

Question

Question: A fighter plane is flying horizontally at an altitude of 1.5 km with speed 720 km h<sup>-1</sup>. At...

A fighter plane is flying horizontally at an altitude of 1.5 km with speed 720 km h-1. At what angle of sight (w.r.t. horizontal) when the target is seen, should the pilot drop the bomb in order to attack the target?

(Take g=10ms2,tan23o=0.43g = 10ms^{- 2},\tan 23^{o} = 0.43)

A

23o23^{o}

B

32o32^{o}

C

12o12^{o}

D

42o42^{o}

Answer

23o23^{o}

Explanation

Solution

Here, u=720kmh1u = 720kmh^{- 1}

=720×518ms1=200ms1= 720 \times \frac{5}{18}ms^{- 1} = 200ms^{- 1}

H = 1.5km=1.5×1000m=1500m1.5km = 1.5 \times 1000m = 1500m

Time taken by the bomb to attack the target

t=2Hg=2×1500m10ms1=300s=103st = \sqrt{\frac{2H}{g}} = \sqrt{\frac{2 \times 1500m}{10ms^{- 1}}} = \sqrt{300}s = 10\sqrt{3}s

R=u×t=200ms1×103s=20003mR = u \times t = 200ms^{- 1} \times 10\sqrt{3}s = 2000\sqrt{3}m

From Figure, Angle of sight (w.r.t. horizontal)

α=tan1(HT)\alpha = \tan^{- 1}\left( \frac{H}{T} \right)

α=tan1(150020003)=tan1(343)=tan1(34)α=tan1(0.43)orα=23\alpha = \tan^{- 1}\left( \frac{1500}{2000\sqrt{3}} \right) = \tan^{- 1}\left( \frac{3}{4\sqrt{3}} \right) = \tan^{- 1}\left( \frac{\sqrt{3}}{4} \right)\alpha = \tan^{- 1}(0.43)or\alpha = 23{^\circ}