Solveeit Logo

Question

Physics Question on Motion in a plane

A fighter plane flying horizontally at an altitude of 1.5km1.5\,km with speed 720kmh1720\,km\,h^{-1} passes directly overhead an anti-aircraft gun. At what angle from the vertical should the gun be fired for the shell with muzzle speed 600ms1600\,ms^{-1} to hit the plane. (Take g=10ms2g = 10\,ms^{-2})

A

sin1(13)sin^{-1}\left(\frac{1}{3}\right)

B

sin1(23)sin^{-1}\left(\frac{2}{3}\right)

C

cos1(13)cos^{-1}\left(\frac{1}{3}\right)

D

cos1(23)cos^{-1}\left(\frac{2}{3}\right)

Answer

sin1(13)sin^{-1}\left(\frac{1}{3}\right)

Explanation

Solution

Here, Speed of the plane, v=750kmh1v=750\,km\,h^{-1} =720×518ms1=720\times\frac{5}{18}ms^{-1} =200ms1=200\,ms^{-1} Speed of the shell, u=600ms1u = 600\,ms^{-1} Let the shell hit the plane at LL after time tt if fired at an angle θ\theta with the vertical from OO. For hitting, horizontal distance travelled by the plane = horizontal distance travelled by the shell. i.e, v×t=usinθ×tv \times t = usin \theta \times t sinθ=vusin\,\theta=\frac{v}{u} =200ms1600ms1=13=\frac{200\,ms^{-1}}{600\,ms^{-1}}=\frac{1}{3} θ=sin1(13)\theta=sin^{-1}\left(\frac{1}{3}\right)