Solveeit Logo

Question

Question: A fighter plane flying horizontally at an altitude of 1.5 km with speed \(720 \mathrm {~km} \mathrm ...

A fighter plane flying horizontally at an altitude of 1.5 km with speed 720 km h1720 \mathrm {~km} \mathrm {~h} ^ { - 1 }passes directly overhead an anti-aircraft gun. At what angle from the vertical should the gun be fired for the shell with muzzle speed 600 m s1600 \mathrm {~m} \mathrm {~s} ^ { - 1 } to hit the plane. (Take g = 10 m s210 \mathrm {~m} \mathrm {~s} ^ { - 2 } )

A

sin1(13)\sin ^ { - 1 } \left( \frac { 1 } { 3 } \right)

B

sin1(23)\sin ^ { - 1 } \left( \frac { 2 } { 3 } \right)

C

cos1(13)\cos ^ { - 1 } \left( \frac { 1 } { 3 } \right)

D

cos1(23)\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)

Answer

sin1(13)\sin ^ { - 1 } \left( \frac { 1 } { 3 } \right)

Explanation

Solution

Here,

Speed of the plane,

v=720 km h1=720×518 ms1\mathrm { v } = 720 \mathrm {~km} \mathrm {~h} ^ { - 1 } = 720 \times \frac { 5 } { 18 } \mathrm {~ms} ^ { - 1 }

=200 ms1= 200 \mathrm {~ms} ^ { - 1 }

Speed of the shell,

Let the shell will hit the plane at L after time t if fired at an angle θ\theta with the vertical from O.

For hitting horizontal distance travelled by the plane = horizontal distance travelled by the shell.

i.e.

sinθ=vu=200 ms1600 ms1=13\sin \theta = \frac { \mathrm { v } } { \mathrm { u } } = \frac { 200 \mathrm {~ms} ^ { - 1 } } { 600 \mathrm {~ms} ^ { - 1 } } = \frac { 1 } { 3 }

θ=sin1(13)\theta = \sin ^ { - 1 } \left( \frac { 1 } { 3 } \right)