Solveeit Logo

Question

Question: A faulty thermometer reads \[5^\circ C\] in melting ice and \[99^\circ C\] in dry steam. Find the co...

A faulty thermometer reads 5C5^\circ C in melting ice and 99C99^\circ C in dry steam. Find the correct temperature in Fahrenheit scale if this faulty thermometer reads 52C52^\circ C.
84F84^\circ F
122F122^\circ F
56F56^\circ F
88F88^\circ F

Explanation

Solution

Use the conversion formula to convert the scales of measurement of the temperature. The lowest temperature at which the ice melts in Celsius scale is 0C0^\circ C and highest temperature of the steam is 100C100^\circ C. Use the conversion formula to convert the temperature from Celsius to Fahrenheit.

Formula used:
Ts(MP)sUTsLTs=TC(MP)CUTCLTC\dfrac{{{T_s} - {{\left( {MP} \right)}_s}}}{{U{T_s} - L{T_s}}} = \dfrac{{{T_C} - {{\left( {MP} \right)}_C}}}{{U{T_C} - L{T_C}}}

Here, (MP)s{\left( {MP} \right)_s} is the melting point of ice of Ts{T_s} scale, (MP)C{\left( {MP} \right)_C} is the melting point of ice of Celsius scale, UTsU{T_s} is the upper temperature and LTsL{T_s} is the lowest temperature of the scale Ts{T_s}, and UTCU{T_C} is the upper temperature and LTCL{T_C} is the lowest temperature of the scale TC{T_C}.

Complete step by step answer: Let the temperature scale of this faulty thermometer is Ts{T_s} and the temperature scale of Celsius scale is TC{T_C}.

Therefore, we can write from the conversion formula to convert the two scales as follows,
Ts(MP)sUTsLTs=TC(MP)CUTCLTC\dfrac{{{T_s} - {{\left( {MP} \right)}_s}}}{{U{T_s} - L{T_s}}} = \dfrac{{{T_C} - {{\left( {MP} \right)}_C}}}{{U{T_C} - L{T_C}}} …… (1)

Here, (MP)s{\left( {MP} \right)_s} is the melting point of ice of Ts{T_s} scale, (MP)C{\left( {MP} \right)_C} is the melting point of ice of Celsius scale, UTsU{T_s} is the upper temperature and LTsL{T_s} is the lowest temperature of the scale Ts{T_s}, and UTCU{T_C} is the upper temperature and LTCL{T_C} is the lowest temperature of the scale TC{T_C}.

Substitute 52C52^\circ C for Ts{T_s}, 5C5^\circ C for (MP)s{\left( {MP} \right)_s}, 99C99^\circ C for UTsU{T_s}, 5C5^\circ C for UTsU{T_s}, 0C0^\circ C for (MP)C{\left( {MP} \right)_C}, 100C100^\circ C for UTCU{T_C} and 0C0^\circ C for LTCL{T_C} in the above equation.
525995=TC01000\dfrac{{52 - 5}}{{99 - 5}} = \dfrac{{{T_C} - 0}}{{100 - 0}}
TC=100×4794\Rightarrow {T_C} = 100 \times \dfrac{{47}}{{94}}
TC=50C\therefore {T_C} = 50^\circ C

Convert the Celsius temperature into Fahrenheit temperature using the below formula,
TF=95TC+32{T_F} = \dfrac{9}{5}{T_C} + 32

Substitute TC=50C{T_C} = 50^\circ C in the above equation.
TF=95(50)+32{T_F} = \dfrac{9}{5}\left( {50} \right) + 32
TF=90+32\Rightarrow {T_F} = 90 + 32

So, the correct answer is option (B).

Note: You can also convert the Celsius scale to Fahrenheit scale using equation (1) by substituting upper and lower limits of the temperatures as 32F32^\circ F and 212F212^\circ F respectively.