Solveeit Logo

Question

Mathematics Question on Probability

A fair six-faced die is rolled 1212 times. The probability that each face turns up twice is equal to

A

12!6!6!612\frac{12!}{6!6!6^{12}}

B

21226612\frac{2^{12}}{2^{6}6^{12}}

C

12!26612\frac{12!}{2^{6}6^{12}}

D

12!62612\frac{12!}{6^{2}6^{12}}

Answer

12!26612\frac{12!}{2^{6}6^{12}}

Explanation

Solution

Required probability
=12C2×10C2×8C2×6C2×4C2×2C2×(16)12={ }^{12} C_{2} \times{ }^{10} C_{2} \times{ }^{8} C_{2} \times{ }^{6} C_{2} \times{ }^{4} C_{2} \times{ }^{2} C_{2} \times\left(\frac{1}{6}\right)^{12}
=12!10!×2!×10!8!×2!×8!6!×2!×6!4!×2!×4!2!×2!×2!2!×1!×(16)12= \frac{12 !}{10 ! \times 2 !} \times \frac{10 !}{8 ! \times 2 !} \times \frac{8 !}{6 ! \times 2 !} \times \frac{6 !}{4 ! \times 2 !} \times \frac{4 !}{2 ! \times 2 !} \times \frac{2 !}{2 ! \times 1 !} \times\left(\frac{1}{6}\right)^{12}
=12!26×612=\frac{12 !}{2^{6} \times 6^{12}}