Solveeit Logo

Question

Mathematics Question on Probability

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let a=P(X=3),b=P(X3)a=P(X=3), b=P(X≥3), and (c=P(X6X>3).( c = P(X \geq 6|X>3). Then b+ca\frac{b+c}{a} is equals to ____.

Answer

Solution:

Step 1. Calculate a=P(X=3)a = P(X = 3):
a=565616=25216a = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} = \frac{25}{216}

Step 2. Calculate b=P(X3)b = P(X \geq 3):
b=56+5656+565616+=2536b = \frac{5}{6} + \frac{5}{6} \cdot \frac{5}{6} + \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \dots = \frac{25}{36}

Step 3. Calculate c=P(X6X3)c = P(X \geq 6 \mid X \geq 3):
c=(56)316+=2536c = \left(\frac{5}{6}\right)^3 \cdot \frac{1}{6} + \dots = \frac{25}{36}

Step 4. Compute b+ca\frac{b + c}{a}:
b+ca=12\frac{b + c}{a} = 12