Question
Mathematics Question on Probability
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G={2, 3, 4, 5}. Find:
- P(E|F) and P(F|E)
- P(E|G) and P(G|E)
- P[(E∪F)G] and P[(E∩F)G]
Answer
S=(1,2,3,4,5,6)
⇒n(S)=6
E=(1,3,5)
F=(2,3)
G=(2,3,4,5)
⇒n(E)=3
⇒n(E)=3
⇒n(G)=4
(i) P(E)=n(S)n(E) =63
P(F)=n(S)n(F)=62
E∩F(=3)
⇒n(E∩F)=1
P(E∩F)=n(S)n(E∩F)=61
P(E∣F)=P(F)P(E∩F)=2/61/6=21
P(F∣E)=P(E)P(E∩F)=3/61/6=31
(ii) P(E)=n(Sn(E)=63
P(G)=n(S)n(G)=64
E∩G=(3,5)
⇒n(E∩G)=2
P(E∩G)=n(S)n(E∩G)=62
P(E∣G)=P(G)P(E∩G)
P(E∣G)=4/62/6
P(E∣G)=42
P(E∣G)=21
P(G∣E)=PE)P(E∩G)
P(G∣E)=3/62/6
P(G∣E)=32
(iii) P(G)=n(S)n(G)=64
E∪F=1,2,3,5 and G=(2,3,4,5)
(E∪F)∩G=(2,3,5)
⇒n[(E∪F)∩G]=3
P[(E∪F)∩G]=63
P(E∪F∣G)=P(G)P[(E∪F)∩G]
P(E∪F∣G)=4/63/6
P(E∪F∣G)=43
Again E∩F=(3)
(E∩F)∩G=3
⇒n[(E∩F)∩G]=1
P[(E∩F)∩G]=61
P(E∩F∣G)=P(G)P[(E∩F)∩G]
P(E∩F∣G)=4/61/6
P(E∩F∣G)=41