Solveeit Logo

Question

Mathematics Question on Probability

A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G={2, 3, 4, 5}. Find:

  1. P(E|F) and P(F|E)
  2. P(E|G) and P(G|E)
  3. P[(E∪F)G] and P[(E∩F)G]
Answer

S=(1,2,3,4,5,6)S = (1, 2, 3, 4, 5, 6)
n(S)=6⇒ n(S) = 6

E=(1,3,5)E = (1 ,3, 5)
F=(2,3)F = (2, 3)
G=(2,3,4,5)G = (2, 3, 4, 5)
n(E)=3⇒ n(E) = 3
n(E)=3⇒ n(E) = 3
n(G)=4⇒ n(G) = 4


(i)(i) P(E)=n(E)n(S)P(E)=\frac {n(E)}{n(S)} =36=\frac 36

P(F)=n(F)n(S)=26P(F)=\frac {n(F)}{n(S)} =\frac {2}{6}

EF(=3)E∩F(=3)
n(EF)=1⇒n(E∩F)=1

P(EF)=n(EF)n(S)=16P(E∩F)=\frac {n(E∩F)}{n(S)} =\frac 16

P(EF)=P(EF)P(F)=1/62/6=12P(E|F)=\frac {P(E∩F)}{P(F) }=\frac {1/6}{2/6} =\frac 12

P(FE)=P(EF)P(E)=1/63/6=13P(F|E)=\frac {P(E∩F)}{P(E)} =\frac {1/6}{3/6} =\frac 13


(ii)(ii) P(E)=n(E)n(S=36P(E)=\frac {n(E)}{n(S}=\frac {3}{6}

P(G)=n(G)n(S)=46P(G)=\frac {n(G)}{n(S)}=\frac 46

EG=(3,5)E∩G=(3,5)
n(EG)=2⇒n(E∩G)=2

P(EG)=n(EG)n(S)=26P(E∩G)=\frac {n(E∩G)}{n(S)} =\frac 26

P(EG)=P(EG)P(G)P(E|G)=\frac {P(E∩G)}{P(G) }

P(EG)=2/64/6P(E|G)=\frac {2/6}{4/6 }

P(EG)=24P(E|G)=\frac 24

P(EG)=12P(E|G)=\frac 12

P(GE)=P(EG)PE)P(G|E)=\frac {P(E∩G)}{PE)}

P(GE)=2/63/6P(G|E)=\frac {2/6}{3/6}

P(GE)=23P(G|E)=\frac 23


(iii)(iii) P(G)=n(G)n(S)=46P(G)=\frac {n(G)}{n(S)} =\frac 46

EF=1,2,3,5 and G=(2,3,4,5)E∪F=1,2,3,5 \ and \ G=(2,3,4,5)
(EF)G=(2,3,5)(E∪F)∩G=(2,3,5)

n[(EF)G]=3⇒n[(E∪F)∩G]=3
P[(EF)G]=36P[(E∪F)∩G]=\frac 36

P(EFG)=P[(EF)G]P(G)P(E∪F|G)=\frac {P[(E∪F)∩G]}{P(G)}

P(EFG)=3/64/6P(E∪F|G)=\frac {3/6}{4/6}

P(EFG)=34P(E∪F|G)=\frac 34

Again EF=(3)Again \ E∩F=(3)
(EF)G=3(E∩F)∩G=3

n[(EF)G]=1⇒n[(E∩F)∩G]=1
P[(EF)G]=16P[(E∩F)∩G]=\frac 16

P(EFG)=P[(EF)G]P(G)P(E∩F|G)=\frac {P[(E∩F)∩G]}{P(G)}

P(EFG)=1/64/6P(E∩F|G)=\frac {1/6}{4/6}

P(EFG)=14P(E∩F|G)=\frac 14