Solveeit Logo

Question

Question: A fair coin is tossed a fixed number of times. If the probability of getting 7 heads is equal to tha...

A fair coin is tossed a fixed number of times. If the probability of getting 7 heads is equal to that of getting 9 heads, then the probability of getting 3 heads is

A

35/212

B

35/214

C

7/212

D

None of these

Answer

35/212

Explanation

Solution

Let the coin be tossed n times

P(7 heads) = nC7(12)7(12)n7=nC7(12)nnC_{7}\left( \frac{1}{2} \right)^{7}\left( \frac{1}{2} \right)^{n - 7} =^{n}C_{7}\left( \frac{1}{2} \right)^{n}

And P(9 heads) = nC9(12)9(12)n9=nC9(12)nnC_{9}\left( \frac{1}{2} \right)^{9}\left( \frac{1}{2} \right)^{n - 9} =^{n}C_{9}\left( \frac{1}{2} \right)^{n}

P(7 heads) = P(9 heads) ⇒ nC7=nC9n=16nC_{7} =^{n}C_{9} \Rightarrow n = 16.

∴ P(3 heads) = 16C3(12)3(12)163=16C2(12)16=3521216C_{3}\left( \frac{1}{2} \right)^{3}\left( \frac{1}{2} \right)^{16 - 3} =^{16}C_{2}\left( \frac{1}{2} \right)^{16} = \frac{35}{2^{12}}