Solveeit Logo

Question

Mathematics Question on Probability

A fair coin is tossed a fixed number of times. If the probability of getting exactly 33 heads equals the probability of getting exactly 55 heads, then the probability of getting exactly one head is

A

Jan-64

B

Jan-32

C

44577

D

44569

Answer

Jan-32

Explanation

Solution

Let the coin be tossed nn times.
Let getting head is consider to be success.
p=12,q=1p=112=12\therefore p=\frac{1}{2},\, q=1-p=1-\frac{1}{2}=\frac{1}{2}
It is given that,
P(X=3)=P(X=5)P(X=3)=P(X=5)
nC3(12)3(12)n3=nC5(12)5(12)n5\Rightarrow{ }^{n} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{n-3}={ }^{n} C_{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{n-5}
nC3=nC6\Rightarrow { }^{n} C_{3}={ }^{n} C_{6}
n=3+5[nCx=nCyx+y=n]\Rightarrow n=3+5 \left[\because{ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x +y=n\right]
n=8\Rightarrow n=8
Now, P(X=1)=8C1(12)1(12)81P(X=1)={ }^{8} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{8-1}
=8C1×(12)8=132={ }^{8} C_{1} \times\left(\frac{1}{2}\right)^{8}=\frac{1}{32}