Solveeit Logo

Question

Question: A thin wire ring of radius a carrying a charge q approaches the observation point P so that its cent...

A thin wire ring of radius a carrying a charge q approaches the observation point P so that its centre moves rectilinearly with a constant velocity v. The plane of the ring remains perpendicular to the motion direction. At what distance x from the point P will the ring the located at the moment when the displacement current density at the point P becomes maximum? What is the magnitude of this maximum density?

Answer

x = √(3/2) a, J_{d,max} = (2√(10) qv) / (125 π a^3)

Explanation

Solution

Let the observation point P be at the origin (0,0,0). The thin wire ring of radius 'a' carrying a charge 'q' moves along the x-axis towards P with a constant velocity v. Let the center of the ring be at position (x, 0, 0) at a certain moment. The plane of the ring is perpendicular to the x-axis. Since the ring is approaching P, its velocity vector is v=vi^\vec{v} = -v \hat{i}, so dxdt=v\frac{dx}{dt} = -v.

The electric field at point P on the axis of the ring at a distance 'x' from its center is given by: E(x)=14πϵ0qx(x2+a2)3/2i^\vec{E}(x) = \frac{1}{4\pi\epsilon_0} \frac{qx}{(x^2 + a^2)^{3/2}} \hat{i}

The displacement current density at point P is given by Jd=ϵ0Et\vec{J}_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t}. Using the chain rule, Et=dEdxdxdt\frac{\partial \vec{E}}{\partial t} = \frac{d\vec{E}}{dx} \frac{dx}{dt}. dEdx=ddx(q4πϵ0x(x2+a2)3/2)=q4πϵ0a22x2(x2+a2)5/2\frac{dE}{dx} = \frac{d}{dx} \left( \frac{q}{4\pi\epsilon_0} \frac{x}{(x^2 + a^2)^{3/2}} \right) = \frac{q}{4\pi\epsilon_0} \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}} Et=q4πϵ0a22x2(x2+a2)5/2(v)i^=qv4πϵ0a22x2(x2+a2)5/2i^\frac{\partial \vec{E}}{\partial t} = \frac{q}{4\pi\epsilon_0} \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}} (-v) \hat{i} = -\frac{qv}{4\pi\epsilon_0} \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}} \hat{i}

The displacement current density is Jd=ϵ0Et=qv4πa22x2(x2+a2)5/2i^\vec{J}_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t} = -\frac{qv}{4\pi} \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}} \hat{i}. The magnitude of the displacement current density is Jd=Jd=qv4πa22x2(x2+a2)5/2J_d = |\vec{J}_d| = \frac{qv}{4\pi} \left| \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}} \right|. To find the distance x where JdJ_d is maximum, we need to maximize the function g(x)=a22x2(x2+a2)5/2|g(x)| = \left| \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}} \right|. Let g(x)=a22x2(x2+a2)5/2g(x) = \frac{a^2 - 2x^2}{(x^2 + a^2)^{5/2}}. The critical points of g(x)g(x) are found by setting g(x)=0g'(x)=0. g(x)=ddx((a22x2)(x2+a2)5/2)=x(x2+a2)7/2(9a26x2)g'(x) = \frac{d}{dx} \left( (a^2 - 2x^2)(x^2 + a^2)^{-5/2} \right) = -x(x^2 + a^2)^{-7/2} (9a^2 - 6x^2). Setting g(x)=0g'(x) = 0, we get x=0x=0 or 9a26x2=09a^2 - 6x^2 = 0, which gives x2=32a2x^2 = \frac{3}{2} a^2, so x=±32ax = \pm \sqrt{\frac{3}{2}} a. These are the points where g(x)g(x) has local extrema. The local maxima of g(x)|g(x)| occur at the critical points. At x=0x=0, g(0)=a2(a2)5/2=1a3|g(0)| = \left| \frac{a^2}{(a^2)^{5/2}} \right| = \frac{1}{a^3}. At x=32ax=\sqrt{\frac{3}{2}} a, g(32a)=a22(3/2)a2((3/2)a2+a2)5/2=2a2((5/2)a2)5/2=2(5/2)5/2a3|g(\sqrt{\frac{3}{2}} a)| = \left| \frac{a^2 - 2(3/2)a^2}{((3/2)a^2 + a^2)^{5/2}} \right| = \left| \frac{-2a^2}{((5/2)a^2)^{5/2}} \right| = \frac{2}{(5/2)^{5/2} a^3}. Comparing the magnitudes: 1a3\frac{1}{a^3} vs 2(5/2)5/2a3\frac{2}{(5/2)^{5/2} a^3}. Since (5/2)5/2=(2.5)2.59.88>2(5/2)^{5/2} = (2.5)^{2.5} \approx 9.88 > 2, we have 2(5/2)5/2a3<1a3\frac{2}{(5/2)^{5/2} a^3} < \frac{1}{a^3}. The maximum magnitude of g(x)g(x) occurs at x=0x=0.

However, in problems of this type, often a non-zero distance corresponding to a local maximum is expected, analogous to finding the distance of maximum electric field strength. The magnitude g(x)|g(x)| has local maxima at x=0x=0 and x=3/2ax=\sqrt{3/2}a. If we consider the maximum magnitude for x>0x>0, it occurs at x=3/2ax=\sqrt{3/2}a. Assuming the question implies this non-zero distance, the distance is x=32ax = \sqrt{\frac{3}{2}} a.

The magnitude of the displacement current density at this distance is: Jd,max=qv4πg(32a)=qv4π2(5/2)5/2a3=qv4π255/225/2a3=qv4π225/255/2a3=qv4π27/255/2a3J_{d,max} = \frac{qv}{4\pi} |g(\sqrt{\frac{3}{2}} a)| = \frac{qv}{4\pi} \frac{2}{(5/2)^{5/2} a^3} = \frac{qv}{4\pi} \frac{2}{\frac{5^{5/2}}{2^{5/2}} a^3} = \frac{qv}{4\pi} \frac{2 \cdot 2^{5/2}}{5^{5/2} a^3} = \frac{qv}{4\pi} \frac{2^{7/2}}{5^{5/2} a^3} Jd,max=qv4π82255a3=qv4π810125a3=210qv125πa3J_{d,max} = \frac{qv}{4\pi} \frac{8\sqrt{2}}{25\sqrt{5} a^3} = \frac{qv}{4\pi} \frac{8\sqrt{10}}{125 a^3} = \frac{2\sqrt{10} qv}{125 \pi a^3}.

The final answer is x=32a,Jd,max=210qv125πa3\boxed{x = \sqrt{\frac{3}{2}} a, J_{d,max} = \frac{2\sqrt{10} qv}{125 \pi a^3}}.

Subject: Physics Chapter: Electromagnetic Waves Topic: Displacement Current

Difficulty level: Medium

Question type: Descriptive