Solveeit Logo

Question

Question: A electron experiences a force ( 4.0 ˆ i + 3.0 ˆ j ) × 10 − 13 N in a uniform magnetic field when ...

A electron experiences a force ( 4.0 ˆ i + 3.0 ˆ j ) × 10 − 13 N in a uniform magnetic field when its velocity is 2.5 h a k × 10 7 m s − 1 When the velocity is redirected and becomes ( 1.5 ˆ i − 2.0 ˆ j ) × 10 7 × 10 − 7 the magnetic force of the electron is zero. The magnetic field vectro → B is .

Answer

The magnetic field vector B\vec{B} is (0.075i^+0.100j^) T(-0.075 \hat{i} + 0.100 \hat{j}) \text{ T}.

Explanation

Solution

The problem involves calculating the magnetic field vector given the magnetic force on an electron at two different velocities. The key principle is the Lorentz force law: F=q(v×B)\vec{F} = q(\vec{v} \times \vec{B}).

  1. Deduce the direction of B\vec{B}:

    The problem states that when the electron's velocity is v2=(1.5i^2.0j^)×107 m/s\vec{v}_2 = (1.5 \hat{i} - 2.0 \hat{j}) \times 10^7 \text{ m/s} (assuming the typo "×107×107\times 10^7 \times 10^{-7}" means ×107\times 10^7), the magnetic force F2=0\vec{F}_2 = 0.

    For the magnetic force to be zero on a moving charge (q0,v0q \neq 0, \vec{v} \neq 0), the velocity vector must be parallel or anti-parallel to the magnetic field vector (v×B=0\vec{v} \times \vec{B} = 0).

    Therefore, B\vec{B} must be parallel to v2\vec{v}_2. This implies that B\vec{B} has no zz-component and its xx and yy components are proportional to those of v2\vec{v}_2.

    Let B=k(1.5i^2.0j^)\vec{B} = k (1.5 \hat{i} - 2.0 \hat{j}) for some scalar constant kk.

  2. Use the first scenario to find the value of kk:

    In the first scenario, the electron experiences a force F1=(4.0i^+3.0j^)×1013 N\vec{F}_1 = (4.0 \hat{i} + 3.0 \hat{j}) \times 10^{-13} \text{ N} when its velocity is v1=2.5×107k^ m/s\vec{v}_1 = 2.5 \times 10^7 \hat{k} \text{ m/s} (assuming "h a k" means k^\hat{k}).

    The charge of an electron is q=e=1.6×1019 Cq = -e = -1.6 \times 10^{-19} \text{ C}.

    Using the Lorentz force law: F1=q(v1×B)\vec{F}_1 = q (\vec{v}_1 \times \vec{B})

    Substitute the known values:

    (4.0i^+3.0j^)×1013=(e)[(2.5×107k^)×k(1.5i^2.0j^)](4.0 \hat{i} + 3.0 \hat{j}) \times 10^{-13} = (-e) [(2.5 \times 10^7 \hat{k}) \times k(1.5 \hat{i} - 2.0 \hat{j})]

    First, calculate the cross product v1×B\vec{v}_1 \times \vec{B}:

    v1×B=(2.5×107k^)×k(1.5i^2.0j^)\vec{v}_1 \times \vec{B} = (2.5 \times 10^7 \hat{k}) \times k(1.5 \hat{i} - 2.0 \hat{j})

    =(2.5×107)k[1.5(k^×i^)2.0(k^×j^)]= (2.5 \times 10^7) k [1.5 (\hat{k} \times \hat{i}) - 2.0 (\hat{k} \times \hat{j})]

    =(2.5×107)k[1.5j^2.0(i^)]= (2.5 \times 10^7) k [1.5 \hat{j} - 2.0 (-\hat{i})]

    =(2.5×107)k[2.0i^+1.5j^]= (2.5 \times 10^7) k [2.0 \hat{i} + 1.5 \hat{j}]

    Now, substitute this back into the force equation:

    (4.0i^+3.0j^)×1013=(e)(2.5×107)k[2.0i^+1.5j^](4.0 \hat{i} + 3.0 \hat{j}) \times 10^{-13} = (-e) (2.5 \times 10^7) k [2.0 \hat{i} + 1.5 \hat{j}]

    (4.0i^+3.0j^)×1013=[e(2.5×107)(2.0)k]i^+[e(2.5×107)(1.5)k]j^(4.0 \hat{i} + 3.0 \hat{j}) \times 10^{-13} = [-e (2.5 \times 10^7) (2.0) k] \hat{i} + [-e (2.5 \times 10^7) (1.5) k] \hat{j}

    (4.0i^+3.0j^)×1013=(5.0×107ek)i^+(3.75×107ek)j^(4.0 \hat{i} + 3.0 \hat{j}) \times 10^{-13} = (-5.0 \times 10^7 e k) \hat{i} + (-3.75 \times 10^7 e k) \hat{j}

  3. Solve for kk:

    Equate the coefficients of i^\hat{i} and j^\hat{j}:

    For i^\hat{i}: 4.0×1013=5.0×107ek4.0 \times 10^{-13} = -5.0 \times 10^7 e k

    ek=4.0×10135.0×107=4.0×10205.0=0.8×1020e k = \frac{4.0 \times 10^{-13}}{-5.0 \times 10^7} = \frac{4.0 \times 10^{-20}}{-5.0} = -0.8 \times 10^{-20}

    For j^\hat{j}: 3.0×1013=3.75×107ek3.0 \times 10^{-13} = -3.75 \times 10^7 e k

    ek=3.0×10133.75×107=3.0×10203.75=0.8×1020e k = \frac{3.0 \times 10^{-13}}{-3.75 \times 10^7} = \frac{3.0 \times 10^{-20}}{-3.75} = -0.8 \times 10^{-20}

    The values are consistent.

    Now, calculate kk using e=1.6×1019 Ce = 1.6 \times 10^{-19} \text{ C}:

    k=0.8×10201.6×1019=0.81.6×1020+19=0.5×101=0.05k = \frac{-0.8 \times 10^{-20}}{1.6 \times 10^{-19}} = -\frac{0.8}{1.6} \times 10^{-20+19} = -0.5 \times 10^{-1} = -0.05

  4. Determine the magnetic field vector B\vec{B}:

    Substitute the value of kk back into the expression for B\vec{B}:

    B=k(1.5i^2.0j^)\vec{B} = k (1.5 \hat{i} - 2.0 \hat{j})

    B=0.05(1.5i^2.0j^)\vec{B} = -0.05 (1.5 \hat{i} - 2.0 \hat{j})

    B=(0.05×1.5i^+0.05×2.0j^)\vec{B} = (-0.05 \times 1.5 \hat{i} + 0.05 \times 2.0 \hat{j})

    B=(0.075i^+0.100j^) T\vec{B} = (-0.075 \hat{i} + 0.100 \hat{j}) \text{ T}

Explanation of the solution:

  1. The condition F2=0\vec{F}_2 = 0 implies that B\vec{B} is parallel to v2\vec{v}_2. This fixes the direction of B\vec{B} as proportional to (1.5i^2.0j^)(1.5 \hat{i} - 2.0 \hat{j}).
  2. The Lorentz force equation F1=q(v1×B)\vec{F}_1 = q(\vec{v}_1 \times \vec{B}) is then used.
  3. Substitute the known values for F1\vec{F}_1, v1\vec{v}_1, qq, and the proportional form of B\vec{B} into the equation.
  4. Perform the vector cross product and equate the components of the resulting force vector with the given F1\vec{F}_1.
  5. Solve the resulting scalar equations to find the proportionality constant, kk.
  6. Substitute kk back into the expression for B\vec{B} to get the final magnetic field vector.