Solveeit Logo

Question

Physics Question on spherical lenses

A double convex lens of focal length f is cut into 4 equivalent parts. One cut is perpendicular to the axis and the other is parallel to the axis of the lens. The focal length of each part is

A

f/2f /2

B

f

C

2f

D

4f

Answer

2f

Explanation

Solution

By lens maker formula. 1f=(μ1)(1R11R2)\frac{1}{ f }=(\mu-1)\left(\frac{1}{ R _{1}}-\frac{1}{ R _{2}}\right) So, cutting along the axis does not change the focal length but cutting perpendicular to the axis change radius of curvature of one side so, focal length changes. So, for a double convex lens, we get R1=R2=RR _{1}= R _{2}= R ) 1f=(μ1)[1R(1R)] 1f=(μ1)[2R]f=R2(μ1)\begin{array}{l} \frac{1}{ f }=(\mu-1)\left[\frac{1}{ R }-\left(-\frac{1}{ R }\right)\right] \\\ \Rightarrow \frac{1}{ f }=(\mu-1)\left[\frac{2}{ R }\right] \Rightarrow f =\frac{ R }{2(\mu-1)} \end{array} Now as it is cut perpendicular to axis R20R _{2} \rightarrow 0  So, 1f=(μ1)[1R0] 1f1=(μ1)1Rf1=R(μ1) f1=2f\begin{array}{l} \text { So, } \Rightarrow \frac{1}{ f }=(\mu-1)\left[\frac{1}{ R }-0\right] \\\ \Rightarrow \frac{1}{ f _{1}}=(\mu-1) \frac{1}{ R } \Rightarrow f _{1}=\frac{ R }{(\mu-1)} \\\ \therefore f _{1}=2 f \end{array} So, focal length of each part as 2f2 f.