Solveeit Logo

Question

Question: A domain in ferromagnetic iron is in the form of a cube of side length 2 \(\mu\)m then the number of...

A domain in ferromagnetic iron is in the form of a cube of side length 2 μ\mum then the number of iron atoms in the domain are (Molecular mass of iron = 55 g mol-1 and density = 7.92 g cm-3)

A

6.92 × 1012 atoms

B

6.92 × 1011 atoms

C

6.92 × 1010 atoms

D

6.92 × 1013 atoms

Answer

6.92 × 1011 atoms

Explanation

Solution

: The volume of the cubic domain

=8×1018 m3=8×1012Cm3= 8 \times 10 ^ { - 18 } \mathrm {~m} ^ { 3 } = 8 \times 10 ^ { - 12 } \mathrm { Cm } ^ { 3 }

and mass = volume × density

=8×1012 cm3×7.9 g cm3= 8 \times 10 ^ { - 12 } \mathrm {~cm} ^ { 3 } \times 7.9 \mathrm {~g} \mathrm {~cm} ^ { - 3 }

=63.2×1012 g= 63.2 \times 10 ^ { - 12 } \mathrm {~g}

Now the avaradro number (6.023×1023)\left( 6.023 \times 10 ^ { 23 } \right)of iron atoms have a mass of 55 g. Hence the number of atoms in the domain are

N=63.2×1012×6.023×102355\mathrm { N } = \frac { 63.2 \times 10 ^ { - 12 } \times 6.023 \times 10 ^ { 23 } } { 55 }

=6.92×1011= 6.92 \times 10 ^ { 11 } atoms