Solveeit Logo

Question

Question: A disposable galvanic cell $Zn|Zn^{2\oplus}||Sn^{2\oplus}|Sn$ is produced using 1.0 mL of 0.5 M $Zn(...

A disposable galvanic cell ZnZn2Sn2SnZn|Zn^{2\oplus}||Sn^{2\oplus}|Sn is produced using 1.0 mL of 0.5 M Zn(NO3)2Zn(NO_3)_2 and 1.0 mL of 0.50 M Sn(NO3)2Sn(NO_3)_2. It is needed to power a pace-maker that draws a constant current of 10610^{-6} Amp to run it and requires atleast 0.50 V to function. Calculate the value of [Zn2][Zn^{2\oplus}] when cell reaches 0.5 V at 298 K.

(Given : E(Zn2Zn)=0.76V;E(Sn2Sn)=0.14 VE^\circ (Zn^{2\oplus}|Zn) = -0.76V; E^\circ (Sn^{2\oplus}|Sn) = -0.14 \text{ V}).

Answer

0.9999 M

Explanation

Solution

The given galvanic cell is ZnZn2Sn2SnZn|Zn^{2\oplus}||Sn^{2\oplus}|Sn.

The standard reduction potentials are: E(Zn2Zn)=0.76 VE^\circ (Zn^{2\oplus}|Zn) = -0.76 \text{ V} E(Sn2Sn)=0.14 VE^\circ (Sn^{2\oplus}|Sn) = -0.14 \text{ V}

1. Determine Anode, Cathode, and Overall Cell Reaction: Since E(Zn2Zn)E^\circ (Zn^{2\oplus}|Zn) is more negative than E(Sn2Sn)E^\circ (Sn^{2\oplus}|Sn), Zinc will be oxidized (anode) and Tin ions will be reduced (cathode).

Anode (Oxidation): Zn(s)Zn2+(aq)+2eZn(s) \rightarrow Zn^{2+}(aq) + 2e^- Cathode (Reduction): Sn2+(aq)+2eSn(s)Sn^{2+}(aq) + 2e^- \rightarrow Sn(s)

Overall Cell Reaction: Zn(s)+Sn2+(aq)Zn2+(aq)+Sn(s)Zn(s) + Sn^{2+}(aq) \rightarrow Zn^{2+}(aq) + Sn(s) The number of electrons transferred, n=2n = 2.

2. Calculate the Standard Cell Potential (EcellE^\circ_{cell}): Ecell=EcathodeEanodeE^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} Ecell=E(Sn2Sn)E(Zn2Zn)E^\circ_{cell} = E^\circ (Sn^{2\oplus}|Sn) - E^\circ (Zn^{2\oplus}|Zn) Ecell=(0.14 V)(0.76 V)E^\circ_{cell} = (-0.14 \text{ V}) - (-0.76 \text{ V}) Ecell=0.62 VE^\circ_{cell} = 0.62 \text{ V}

3. Apply the Nernst Equation: The Nernst equation at 298 K is: Ecell=Ecell0.0592nlog10QE_{cell} = E^\circ_{cell} - \frac{0.0592}{n} \log_{10} Q Where QQ is the reaction quotient. For the given reaction: Q=[Zn2+][Sn2+]Q = \frac{[Zn^{2+}]}{[Sn^{2+}]}

We are given that the cell potential Ecell=0.50 VE_{cell} = 0.50 \text{ V} at 298 K. Substitute the values into the Nernst equation: 0.50 V=0.62 V0.05922log10[Zn2+][Sn2+]0.50 \text{ V} = 0.62 \text{ V} - \frac{0.0592}{2} \log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]} 0.50=0.620.0296log10[Zn2+][Sn2+]0.50 = 0.62 - 0.0296 \log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]}

Rearrange to solve for the logarithm term: 0.0296log10[Zn2+][Sn2+]=0.620.500.0296 \log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]} = 0.62 - 0.50 0.0296log10[Zn2+][Sn2+]=0.120.0296 \log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]} = 0.12 log10[Zn2+][Sn2+]=0.120.0296\log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]} = \frac{0.12}{0.0296} log10[Zn2+][Sn2+]4.054054\log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]} \approx 4.054054

Now, calculate the ratio [Zn2+][Sn2+]\frac{[Zn^{2+}]}{[Sn^{2+}]}: [Zn2+][Sn2+]=104.05405411324.7\frac{[Zn^{2+}]}{[Sn^{2+}]} = 10^{4.054054} \approx 11324.7

4. Calculate the Concentrations: Initial concentrations: [Zn2+]initial=0.5 M[Zn^{2+}]_{initial} = 0.5 \text{ M} and [Sn2+]initial=0.5 M[Sn^{2+}]_{initial} = 0.5 \text{ M}. Let xx be the change in concentration of Sn2+Sn^{2+} (moles/L) that has reacted when the cell potential is 0.5 V. According to the stoichiometry of the reaction, if xx moles/L of Sn2+Sn^{2+} are consumed, then xx moles/L of Zn2+Zn^{2+} are produced.

So, the concentrations at 0.5 V will be: [Sn2+]=0.5x[Sn^{2+}] = 0.5 - x [Zn2+]=0.5+x[Zn^{2+}] = 0.5 + x

Substitute these into the ratio: 0.5+x0.5x=11324.7\frac{0.5 + x}{0.5 - x} = 11324.7

Solve for xx: 0.5+x=11324.7×(0.5x)0.5 + x = 11324.7 \times (0.5 - x) 0.5+x=5662.3511324.7x0.5 + x = 5662.35 - 11324.7x x+11324.7x=5662.350.5x + 11324.7x = 5662.35 - 0.5 11325.7x=5661.8511325.7x = 5661.85 x=5661.8511325.70.4999139 Mx = \frac{5661.85}{11325.7} \approx 0.4999139 \text{ M}

Now, calculate [Zn2+][Zn^{2+}]: [Zn2+]=0.5+x[Zn^{2+}] = 0.5 + x [Zn2+]=0.5+0.4999139[Zn^{2+}] = 0.5 + 0.4999139 [Zn2+]=0.9999139 M[Zn^{2+}] = 0.9999139 \text{ M}

Rounding to four significant figures, [Zn2+]0.9999 M[Zn^{2+}] \approx 0.9999 \text{ M}.

Core Solution:

  1. Identify anode (Zn) and cathode (Sn).
  2. Write cell reaction: Zn(s)+Sn2+(aq)Zn2+(aq)+Sn(s)Zn(s) + Sn^{2+}(aq) \rightarrow Zn^{2+}(aq) + Sn(s), n=2n=2.
  3. Calculate standard cell potential: Ecell=ESn2+SnEZn2+Zn=0.14(0.76)=0.62 VE^\circ_{cell} = E^\circ_{Sn^{2+}|Sn} - E^\circ_{Zn^{2+}|Zn} = -0.14 - (-0.76) = 0.62 \text{ V}.
  4. Apply Nernst equation at 298 K: Ecell=Ecell0.0592nlog10[Zn2+][Sn2+]E_{cell} = E^\circ_{cell} - \frac{0.0592}{n} \log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]}.
  5. Substitute Ecell=0.50 VE_{cell} = 0.50 \text{ V}: 0.50=0.620.05922log10[Zn2+][Sn2+]0.50 = 0.62 - \frac{0.0592}{2} \log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]}.
  6. Solve for the concentration ratio: log10[Zn2+][Sn2+]=0.120.02964.054054\log_{10} \frac{[Zn^{2+}]}{[Sn^{2+}]} = \frac{0.12}{0.0296} \approx 4.054054.
  7. Calculate the ratio: [Zn2+][Sn2+]=104.05405411324.7\frac{[Zn^{2+}]}{[Sn^{2+}]} = 10^{4.054054} \approx 11324.7.
  8. Let initial concentrations be 0.5 M0.5 \text{ M}. If xx moles/L of Sn2+Sn^{2+} react, then [Sn2+]=0.5x[Sn^{2+}] = 0.5 - x and [Zn2+]=0.5+x[Zn^{2+}] = 0.5 + x.
  9. Set up equation: 0.5+x0.5x=11324.7\frac{0.5 + x}{0.5 - x} = 11324.7.
  10. Solve for xx: x0.4999139 Mx \approx 0.4999139 \text{ M}.
  11. Calculate [Zn2+]=0.5+x=0.5+0.49991390.9999139 M[Zn^{2+}] = 0.5 + x = 0.5 + 0.4999139 \approx 0.9999139 \text{ M}.
  12. Rounding to four decimal places, [Zn2+]0.9999 M[Zn^{2+}] \approx 0.9999 \text{ M}.