Solveeit Logo

Question

Physics Question on Electric Flux

A disk of radius RR with uniform positive charge density σ\sigma is placed on the xyx y plane with its center at the origin. The Coulomb potential along the zz-axis is V(z)=σ2ϵ0(R2+z2z)V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right).
A particle of positive charge qq is placed initially at rest at a point on the zz axis with z=z0z=z_0 and z0>0z_0>0. In addition to the Coulomb force, the particle experiences a vertical force F=ck^\vec{F}=-c \hat{k} with c>0c>0 Let β=2c0qσ\beta=\frac{2 c \in_0}{q \sigma}. Which of the following statement(s) is(are) correct?

A

For β=14\beta=\frac{1}{4} and z0=257Rz_0=\frac{25}{7} R, the particle reaches the origin.

B

For β=14\beta=\frac{1}{4} and z0=37Rz_0=\frac{3}{7} R, the particle reaches the origin.

C

For β=14\beta=\frac{1}{4} and z0=R3z_0=\frac{R}{\sqrt{3}}, the particle returns back to z=z0z=z_0.

D

For β>1\beta>1 and z0>0z_0>0, the particle always reaches the origin.

Answer

For β=14\beta=\frac{1}{4} and z0=257Rz_0=\frac{25}{7} R, the particle reaches the origin.

Explanation

Solution

Given:
F1=26R2+Z22E0F_1 = \frac{26\sqrt{R^2 + Z^2}}{2E_0}
F2=ckF_2 = -ck
ασ280\frac{\alpha \sigma}{280}

For equilibrium at z=Zoz = \frac{Z}{o}
F1=F2F_1 = F_2

ασ280ZR2+Z2=c\frac{\alpha \sigma}{280} \cdot \frac{Z}{\sqrt{R^2 + Z^2}} = c

From equation (1):
c=(13ZR2+Z2)c = (1 - 3\frac{Z}{\sqrt{R^2 + Z^2}})

ZR2+Z2=c(13ZR2+Z2)\frac{Z}{\sqrt{R^2 + Z^2}} = c(1 - 3\frac{Z}{\sqrt{R^2 + Z^2}})

14ZR2+Z2=4c2c80\frac{1}{4} \cdot \frac{Z}{\sqrt{R^2 + Z^2}} = \frac{4c}{2c_{80}}

7RR=1.13R\frac{7}{\sqrt{R} - R} = 1.13R

𝑍>1.13𝑅𝐹2>𝐹1𝑍>1.13𝑅⇒𝐹_2>𝐹_1​ Particle reaches the origin.

𝑍<1.13𝑅𝐹1>𝐹2𝑍<1.13𝑅⇒𝐹_1>𝐹_2 Particle reaches back to 𝑧=𝑍𝑜