Solveeit Logo

Question

Physics Question on laws of motion

A disc rotates about its axis of symmetry in a horizontal plane at a steady rate of 3.53.5 revolutions per second. A coin placed at a distance of 1.25cm1.25\, cm from the axis of rotation remains at rest on the disc. The coefficient of friction between the coin and the disc is : (g=10m/s2)(g = 10 \, m/s^2)

A

0.5

B

0.3

C

0.7

D

0.6

Answer

0.6

Explanation

Solution

The correct answer is D:0.6
We have
mω2r=μmgm \omega^{2} r=\mu m g
Given: rate of rotation =3.5rev/s=3.5\, rev / s
1\Rightarrow 1 revolution =2πrad=2 \,\pi \,rad

That is, 3.53.5 revolutions =3.5×2πrad=3.5 \times 2 \,\pi \,rad
Therefore,
ω=3.5×2πrad/s\omega=3.5 \times 2 \,\pi\, rad / s
r=1.25cm=1.25×102mr=1.25\, cm =1.25 \times 10^{-2}\, m
Thus, from E (1), we have
mω2r=μmgm \omega^{2} r=\mu m g
ω2r=μg\Rightarrow \omega^{2} r=\mu g
μ=ω2rg=(3.5×2π)2(1.25×102)10\Rightarrow \mu=\frac{\omega^{2} r}{g}=\frac{(3.5 \times 2 \pi)^{2}\left(1.25 \times 10^{-2}\right)}{10}
μ=0.60\Rightarrow \mu=0.60