Solveeit Logo

Question

Physics Question on rotational motion

A disc of radius R and mass M is rolling horizontally without slipping with speed . It then moves up an inclined smooth surface as shown in figure. The maximum height that the disc can go up the incline is :
rolling disc

A

v2g\frac{v^2}{g}

B

3v24g\frac{3v^2}{4g}

C

v22g\frac{v^2}{2g}

D

2v23g\frac{2v^2}{3g}

Answer

v22g\frac{v^2}{2g}

Explanation

Solution

Given: - Mass of the disc: MM - Radius of the disc: RR - Speed of the disc: vv - Gravitational acceleration: gg

Step 1: Total Kinetic Energy of the Rolling Disc

For a disc rolling without slipping, the total kinetic energy (KK) is the sum of translational kinetic energy and rotational kinetic energy:

K=Translational K.E.+Rotational K.E.K = \text{Translational K.E.} + \text{Rotational K.E.} K=12Mv2+12Iω2K = \frac{1}{2} M v^2 + \frac{1}{2} I \omega^2

The moment of inertia (II) of the disc about its center is:

I=12MR2I = \frac{1}{2} M R^2

The angular velocity (ω\omega) is related to the linear speed by:

ω=vR\omega = \frac{v}{R}

Substituting these values:

K=12Mv2+12(12MR2)(vR)2K = \frac{1}{2} M v^2 + \frac{1}{2} \left(\frac{1}{2} M R^2\right) \left(\frac{v}{R}\right)^2 K=12Mv2+14Mv2K = \frac{1}{2} M v^2 + \frac{1}{4} M v^2 K=34Mv2K = \frac{3}{4} M v^2

Step 2: Conservation of Energy

As the disc moves up the incline, its kinetic energy is converted into potential energy (UU) at the maximum height hh:

K=UK = U 34Mv2=Mgh\frac{3}{4} M v^2 = M g h

Solving for hh:

h=34v2gh = \frac{3}{4} \frac{v^2}{g}

Conclusion:

The maximum height that the disc can go up the incline is 34v2g\frac{3}{4} \frac{v^2}{g}.