Solveeit Logo

Question

Question: A disc of radius R = 10 cm oscillates as a physical pendulum about an axis perpendicular to the plan...

A disc of radius R = 10 cm oscillates as a physical pendulum about an axis perpendicular to the plane of the disc at a distance r from its centre. If r = R4\frac { \mathrm { R } } { 4 } , the approximate period of oscillation is (Take g = 10 m s–2)

A

0.84 s

B

0.94 s

C

1.26 s

D

1.42 s

Answer

0.94 s

Explanation

Solution

Time period of a physical pendulum is

T=2π1mgh\mathrm { T } = 2 \pi \sqrt { \frac { 1 } { \mathrm { mgh } } }

Where I is the moment of inertia of the pendulum about an axis through the pivot m is the mass of the pendulum and h is the distance from the pivot to the centre of mass.

In this case a solid disc of R oscillates as a physical pendulum about an axis perpendicular to the plane of the disc at a distance r from its centre

I=mR22+mr2=mR22+m(R4)2=mR22+mR216\therefore \mathrm { I } = \frac { \mathrm { mR } ^ { 2 } } { 2 } + \mathrm { mr } ^ { 2 } = \frac { \mathrm { mR } ^ { 2 } } { 2 } + \mathrm { m } \left( \frac { \mathrm { R } } { 4 } \right) ^ { 2 } = \frac { \mathrm { mR } ^ { 2 } } { 2 } + \frac { \mathrm { mR } ^ { 2 } } { 16 } (r=R4)\left( \because r = \frac { R } { 4 } \right)

Here, R = 10 cm =0.1 m, h=R4= 0.1 \mathrm {~m} , \mathrm {~h} = \frac { \mathrm { R } } { 4 }

=2π9×0.14×10=2π×110=0.94 s= 2 \pi \sqrt { \frac { 9 \times 0.1 } { 4 \times 10 } } = 2 \pi \times \frac { 1 } { 10 } = 0.94 \mathrm {~s}