Solveeit Logo

Question

Physics Question on Oscillations

A disc of radius a and mass m is pivoted at the rim and is set in small oscillation. If a simple pendulum have the same period as that of the disc, then the length of the simple pendulum should be

A

52a\frac{5}{2}a

B

32a\frac{3}{2}a

C

72a\frac{7}{2}a

D

12a\frac{1}{2}a

Answer

32a\frac{3}{2}a

Explanation

Solution

We know that period of a physical pendulum T=2πl0mgd=2π12ma2+ma2mga=2π3a2gT=2\pi \sqrt{\frac{{{l}_{0}}}{mgd}}=2\pi \sqrt{\frac{\frac{1}{2}m{{a}^{2}}+m{{a}^{2}}}{mga}}=2\pi \sqrt{\frac{3a}{2g}} T for simple pendulum =2πlg=2\pi \sqrt{\frac{l}{g}} ?(ii) From Eqs. (i) and (ii), we get l=32al=\frac{3}{2}a