Solveeit Logo

Question

Physics Question on Moment Of Inertia

A disc of moment of inertia I1'I_1' is rotating in horizontal plane about an axis passing through a centre and perpendicular to its plane w ith constant angular speed ?ω1?\omega_1'. Another disc of moment of inertia ?I2??I_2? having zero angular speed is placed coaxially on a rotating disc. Now both the. discs are rotating with constant angular speed ?Ω2??\Omega_2 ?. The energy lost by the initial rotating disc is

A

12[I1+I2I1I2]ω12\frac{1}{2} \left[ \frac{I_1 + I_2}{I_1 I_2 } \right] \omega_1^2

B

12[I1I2I1I2]ω12\frac{1}{2} \left[ \frac{I_1 I_2 }{I_1 - I_2} \right] \omega_1^2

C

12[I1I2I1I2]ω12\frac{1}{2} \left[ \frac{I_1 - I_2}{I_1 I_2 } \right] \omega_1^2

D

12[I1I2I1+I2]ω12\frac{1}{2} \left[ \frac{I_1 I_2 }{I_1 + I_2} \right] \omega_1^2

Answer

12[I1I2I1+I2]ω12\frac{1}{2} \left[ \frac{I_1 I_2 }{I_1 + I_2} \right] \omega_1^2

Explanation

Solution

Answer (d) 12[I1I2I1+I2]ω12\frac{1}{2} \left[ \frac{I_1 I_2 }{I_1 + I_2} \right] \omega_1^2