Solveeit Logo

Question

Question: A disc of moment of inertia \(\frac{9.8}{\pi^{2}}kgm^{2}\) is rotating at 600 rpm. If the frequency ...

A disc of moment of inertia 9.8π2kgm2\frac{9.8}{\pi^{2}}kgm^{2} is rotating at 600 rpm. If the frequency of rotation changes from 600 rpm to 300 rpm, then what is the work done:

A

1467 J

B

1452 J

C

1567 J

D

1632 J

Answer

1467 J

Explanation

Solution

Work done = Change in rotational kinetic energy =12I×(ω12ω22)=12I×4π2(n12n22)=12×9.8π2×4π2(10252)=9.8×2×75=14706muJ= \frac{1}{2}I \times (\omega_{1}^{2} - \omega_{2}^{2}) = \frac{1}{2}I \times 4\pi^{2}(n_{1}^{2} - n_{2}^{2}) = \frac{1}{2} \times \frac{9.8}{\pi^{2}} \times 4\pi^{2}(10^{2} - 5^{2}) = 9.8 \times 2 \times 75 = 1470\mspace{6mu} J