Solveeit Logo

Question

Question: A disc is rotating with angular velocity \(\overrightarrow{\omega}\) about its axis. A force \(\over...

A disc is rotating with angular velocity ω\overrightarrow{\omega} about its axis. A force F\overrightarrow{F} acts at a point whose position vector with respect to the axis of rotation is r\overrightarrow{r}. The power associated with the torque due to the force is given by

A

(r×F).ω\left( \overrightarrow{r} \times \overrightarrow{F} \right).\overrightarrow{\omega}

B

(r×F)×ω\left( \overrightarrow{r} \times \overrightarrow{F} \right) \times \overrightarrow{\omega}

C

r.(F×ω)\overrightarrow{r}.\left( \overrightarrow{F} \times \overrightarrow{\omega} \right)

D

r×(F×ω)\overrightarrow{r} \times \left( \overrightarrow{F} \times \overrightarrow{\omega} \right)

Answer

(r×F).ω\left( \overrightarrow{r} \times \overrightarrow{F} \right).\overrightarrow{\omega}

Explanation

Solution

Torque, τ=r×F\overset{\rightarrow}{\tau} = \overset{\rightarrow}{r} \times \overset{\rightarrow}{F}

\thereforePower associated with the torque is

P=τ.ω=(r×F.)ωP = \overset{\rightarrow}{\tau}.\overset{\rightarrow}{\omega} = (\overset{\rightarrow}{r} \times \overset{\rightarrow}{F}.)\overset{\rightarrow}{\omega}