Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A disc has mass 'M' and radius 'R' . How much tangential force should be applied to the rim of the disc so as to rotate with angular velocity ω'\omega ' in time 't' ?

A

MRω4t\frac{MR \omega}{4t}

B

MRω2t\frac{MR \omega}{2t}

C

MRωt\frac{MR \omega}{t}

D

MRωtMR \omega t

Answer

MRω2t\frac{MR \omega}{2t}

Explanation

Solution

Given, mass of disc =M=M
Radius of disc =R=R
We know that,
τ=Iα...(i)\tau= I \alpha \,\,\,\,\,\,\, ...(i)
But τ=F×R\,\,\,\,\,\,\, \tau=F \times R
I=MR22I=\frac{M R^{2}}{2}
and α=ωt\,\,\,\, \alpha=\frac{\omega}{t}
Therefore, F×R=MR22×ωtF \times R =\frac{M R^{2}}{2} \times \frac{\omega}{t}
F=MR2×ωtF=MRω2tF =\frac{M R}{2} \times \frac{\omega}{t} \,\,\,\, F=\frac{M R \omega}{2 t}