Solveeit Logo

Question

Question: A disc and a ring of same mass are rolling and if their kinetic energies are equal, then the ratio o...

A disc and a ring of same mass are rolling and if their kinetic energies are equal, then the ratio of their velocities will be

A

4:3\sqrt{4}:\sqrt{3}

B

3:4\sqrt{3}:\sqrt{4}

C

3:2\sqrt{3}:\sqrt{2}

D

2:3\sqrt{2}:\sqrt{3}

Answer

4:3\sqrt{4}:\sqrt{3}

Explanation

Solution

Kdisc=12mvd2(1+k2R2)K_{disc} = \frac{1}{2}mv_{d}^{2}\left( 1 + \frac{k^{2}}{R^{2}} \right)

=34mvd2= \frac{3}{4}mv_{d}^{2} [Ask2R2=12for disc]\left\lbrack As\frac{k^{2}}{R^{2}} = \frac{1}{2}\text{for disc} \right\rbrack

Kring=12mvr(1+k2R2)=mvr2K_{ring} = \frac{1}{2}mv_{r}\left( 1 + \frac{k^{2}}{R^{2}} \right) = mv_{r}^{2} [Ask2R2=1for ring]\left\lbrack As\frac{k^{2}}{R^{2}} = 1\text{for ring} \right\rbrack

According to problem Kdisc=KringK_{disc} = K_{ring}34mvd2=mvr2\frac{3}{4}mv_{d}^{2} = mv_{r}^{2}

vdvr=43\frac{v_{d}}{v_{r}} = \sqrt{\frac{4}{3}}.