Solveeit Logo

Question

Question: A diffraction grafting experiment is set up using orange light of wavelength \( 600nm. \) The gra...

A diffraction grafting experiment is set up using orange light of wavelength 600nm.600nm.
The grafting has a slit separation of 2.0μm.2.0\mu m.
What is the angular separation (θ2θ1)\left( {{\theta _2} - {\theta _1}} \right) between the first and second order maxima of the orange light?
(A) 17.50{17.5^0}
(B) 19.40{19.4^0}
(C) 36.90{36.9^0}
(D) 54.30{54.3^0}

Explanation

Solution

Hint : The diffraction grating is an optical component with a periodic structure which splits and diffracts light into the several beams travelling in the different directions. Use formula, nλ=dsinθn\lambda = d\sin \theta where, n1,2,3,....n - 1,2,3,.... and λ\lambda is the wavelength, θ=\theta = the angle of emergence and d is the slit separation.

Complete Step By Step Answer:
Given that the wavelength, λ=600nm\lambda = 600nm
Place the value of nano-metre -
λ=600×109m\lambda = 600 \times {10^{ - 9}}m
d=2μm d=2×106m  d = 2\mu m \\\ d = 2 \times {10^{ - 6}}m \\\
Now using the equation of the diffraction grating,
nλ=dsinθn\lambda = d\sin \theta
sinθ=nλd\sin \theta = \dfrac{{n\lambda }}{d}
When the angle is very small,
We can write,
θnnλd{\theta _n} \approx \dfrac{{n\lambda }}{d}
Place the value of n=1,2n = 1,2
θ2=2λd .........(1){\theta _2} = \dfrac{{2\lambda }}{d}{\text{ }}.........{\text{(1)}}
Similarly,
θ1=λd .........(2){\theta _1} = \dfrac{\lambda }{d}{\text{ }}.........{\text{(2)}}
Subtract the equation (2)(2) from (1)(1)
θ2θ1=2λd - λd  θ2θ1=λd   {\theta _2} - {\theta _1} = \dfrac{{2\lambda }}{d}{\text{ - }}\dfrac{\lambda }{d}{\text{ }} \\\ {\theta _2} - {\theta _1} = \dfrac{\lambda }{d}{\text{ }} \\\
Place the given values in the above equations –
θ2θ1=600×1092×106{\theta _2} - {\theta _1} = \dfrac{{600 \times {{10}^{ - 9}}}}{{2 \times {{10}^{ - 6}}}}
According to the property when the negative powers are moved from the denominator to the numerator or vice-versa the powers are changed to positive.
θ2θ1=600×1062×109 θ2θ1=300×106109 θ2θ1=310 θ2θ1=0.3radian  {\theta _2} - {\theta _1} = \dfrac{{600 \times {{10}^6}}}{{2 \times {{10}^9}}} \\\ {\theta _2} - {\theta _1} = \dfrac{{300 \times {{10}^6}}}{{{{10}^9}}} \\\ {\theta _2} - {\theta _1} = \dfrac{3}{{{{10}^{}}}} \\\ {\theta _2} - {\theta _1} = 0.3\,{\text{radian}} \\\
Convert radians into degree –
1 Degree = 180π×radians1{\text{ Degree = }}\dfrac{{{\text{180}}^\circ }}{\pi } \times {\text{radians}}
Therefore,
0.3 radians = 1803.1415×0.3 0.3 radians =17.5  0.3{\text{ radians = }}\dfrac{{{\text{180}}}}{{3.1415}} \times 0.3 \\\ 0.3{\text{ radians }} = 17.5^\circ \\\
Therefore, the required solution - A diffraction grafting experiment is set up using orange light of wavelength 600nm.600nm. and the grafting has a slit separation of 2.0μm.2.0\mu m. then, the angular separation (θ2θ1)\left( {{\theta _2} - {\theta _1}} \right) between the first and second order maxima of the orange light is 17.517.5^\circ
Hence, from the given multiple choices, option A is the correct answer.

Note :
Always check the given units and convert them in the same format. As the same we converted nano-meters and micrometers in metres. Follow the different system of formats to solve these types of examples. There are three systems of formats to describe units.
A) MKS System (Meter Kilogram System )
B.) CGS System (Centimetre Gram System)
C.) SI Unit System International