Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

A differential equation dydx=(y+4x4)2\frac{dy}{dx}= \left(y+4x -4\right)^{2} is given. At x=0,y=4x = 0, y = 4 the solution of this differential equation is given by

A

y+4x=2tan(2x)y + 4x = 2tan \,(2x)

B

y+4x4=2tan(x)y + 4x - 4 = 2 \,tan\, (x)

C

y+4x4=2tan(2x)y + 4x - 4 = 2 \,tan\, (2x)

D

y+4x4=tan(2x)y + 4x - 4 = tan\, (2x)

Answer

y+4x4=2tan(2x)y + 4x - 4 = 2 \,tan\, (2x)

Explanation

Solution

We have, dydx=(y+4x4)2\frac{dy}{dx}=(y+4x-4)^{2}
put y+4x=uy+4x=u so that dtdx+4=dudx\frac{dt}{dx}+4=\frac{du}{dx}
So, the given differential equation becomes
dudx4\frac{du}{dx}-4
=(u4)2=(u-4)^{2}
dudx\Rightarrow \frac{du}{dx}
=(u+4)2+4=(u+4)^{2}+4
du(u4)2+(2)2=dx\Rightarrow \frac{du}{\left(u-4\right)^{2}+\left(2\right)^{2}}=dx
On integrating, we get
du(u4)2+(2)2=dx+c\int \frac{du}{\left(u-4\right)^{2}+\left(2\right)^{2}}=\int dx +c
12tan1(u42)=x+c\Rightarrow \frac{1}{2} tan^{-1}\left(\frac{u-4}{2}\right)=x+c
12tan1(y+4x42)\Rightarrow \frac{1}{2}tan^{-1} \left(\frac{y+4x-4}{2}\right)
=x+c[u=y+4x]=x+c \left[\because u=y+4x\right]
When x=0x = 0, y=4y=4, we have
12tan1(0)=0+c\frac{1}{2} tan^{-1}\left(0\right)=0+c
c=0\Rightarrow c=0
\therefore Solution is, 12tan1(y+4x42)=x\frac{1}{2} tan^{-1} \left(\frac{y+4x-4}{2}\right)=x
y+4x4=2\Rightarrow y+4x-4=2 tan (2x)\left(2x\right), which is required solution