Question
Mathematics Question on General and Particular Solutions of a Differential Equation
A differential equation dxdy=(y+4x−4)2 is given. At x=0,y=4 the solution of this differential equation is given by
A
y+4x=2tan(2x)
B
y+4x−4=2tan(x)
C
y+4x−4=2tan(2x)
D
y+4x−4=tan(2x)
Answer
y+4x−4=2tan(2x)
Explanation
Solution
We have, dxdy=(y+4x−4)2
put y+4x=u so that dxdt+4=dxdu
So, the given differential equation becomes
dxdu−4
=(u−4)2
⇒dxdu
=(u+4)2+4
⇒(u−4)2+(2)2du=dx
On integrating, we get
∫(u−4)2+(2)2du=∫dx+c
⇒21tan−1(2u−4)=x+c
⇒21tan−1(2y+4x−4)
=x+c[∵u=y+4x]
When x=0, y=4, we have
21tan−1(0)=0+c
⇒c=0
∴ Solution is, 21tan−1(2y+4x−4)=x
⇒y+4x−4=2 tan (2x), which is required solution