Solveeit Logo

Question

Question: A differentiable function $f$ satisfies the relation $f(x+y)=f(x)+f(y)+2xy(x+y)-\frac{1}{3}\forall x...

A differentiable function ff satisfies the relation f(x+y)=f(x)+f(y)+2xy(x+y)13x,yRf(x+y)=f(x)+f(y)+2xy(x+y)-\frac{1}{3}\forall x,y \in R and limh0(3f(h)16h)=23lim_{h\to 0}(\frac{3f(h)-1}{6h})=\frac{2}{3} then value of [f(2)][f(2)] is, where [.] denote GIF

Answer

8

Explanation

Solution

Let the given functional equation be f(x+y)=f(x)+f(y)+2xy(x+y)13()f(x+y) = f(x) + f(y) + 2xy(x+y) - \frac{1}{3} \quad (*). This relation holds for all x,yRx, y \in R. The function ff is differentiable.

First, let's find the value of f(0)f(0). Set x=0x=0 and y=0y=0 in the functional equation ()(*): f(0+0)=f(0)+f(0)+2(0)(0)(0+0)13f(0+0) = f(0) + f(0) + 2(0)(0)(0+0) - \frac{1}{3} f(0)=2f(0)13f(0) = 2f(0) - \frac{1}{3} f(0)=13f(0) = \frac{1}{3}.

Next, we use the given limit condition: limh0(3f(h)16h)=23\lim_{h\to 0} \left(\frac{3f(h)-1}{6h}\right) = \frac{2}{3} We know f(0)=13f(0) = \frac{1}{3}, so 3f(0)=13f(0) = 1. The limit can be rewritten as: limh0(3f(h)3f(0)6h)=23\lim_{h\to 0} \left(\frac{3f(h)-3f(0)}{6h}\right) = \frac{2}{3} 36limh0(f(h)f(0)h)=23\frac{3}{6} \lim_{h\to 0} \left(\frac{f(h)-f(0)}{h}\right) = \frac{2}{3} 12f(0)=23\frac{1}{2} f'(0) = \frac{2}{3} f(0)=43f'(0) = \frac{4}{3}.

Now we need to find the derivative of f(x)f(x). We can use the definition of the derivative: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} From the functional equation ()(*), set y=hy=h: f(x+h)=f(x)+f(h)+2xh(x+h)13f(x+h) = f(x) + f(h) + 2xh(x+h) - \frac{1}{3} So, f(x+h)f(x)=f(h)+2xh(x+h)13f(x+h) - f(x) = f(h) + 2xh(x+h) - \frac{1}{3}. Substitute this into the definition of the derivative: f(x)=limh0f(h)+2xh(x+h)13hf'(x) = \lim_{h\to 0} \frac{f(h) + 2xh(x+h) - \frac{1}{3}}{h} f(x)=limh0(f(h)13h+2xh(x+h)h)f'(x) = \lim_{h\to 0} \left(\frac{f(h)-\frac{1}{3}}{h} + \frac{2xh(x+h)}{h}\right) Since f(0)=13f(0) = \frac{1}{3}, we have f(h)13h=f(h)f(0)h\frac{f(h)-\frac{1}{3}}{h} = \frac{f(h)-f(0)}{h}. f(x)=limh0(f(h)f(0)h+2x(x+h))f'(x) = \lim_{h\to 0} \left(\frac{f(h)-f(0)}{h} + 2x(x+h)\right) f(x)=limh0f(h)f(0)h+limh02x(x+h)f'(x) = \lim_{h\to 0} \frac{f(h)-f(0)}{h} + \lim_{h\to 0} 2x(x+h) The first limit is f(0)f'(0), and the second limit is 2x(x+0)=2x22x(x+0) = 2x^2. f(x)=f(0)+2x2f'(x) = f'(0) + 2x^2 Substitute the value of f(0)=43f'(0) = \frac{4}{3}: f(x)=43+2x2f'(x) = \frac{4}{3} + 2x^2.

Now, integrate f(x)f'(x) to find f(x)f(x): f(x)=(43+2x2)dxf(x) = \int \left(\frac{4}{3} + 2x^2\right) dx f(x)=43x+2x33+Cf(x) = \frac{4}{3}x + \frac{2x^3}{3} + C, where CC is the constant of integration.

To find CC, use the value f(0)=13f(0) = \frac{1}{3}: f(0)=43(0)+2(0)33+Cf(0) = \frac{4}{3}(0) + \frac{2(0)^3}{3} + C 13=0+0+C\frac{1}{3} = 0 + 0 + C C=13C = \frac{1}{3}.

So, the function is f(x)=2x33+4x3+13f(x) = \frac{2x^3}{3} + \frac{4x}{3} + \frac{1}{3}.

The question asks for the value of [f(2)][f(2)], where [.] denotes the Greatest Integer Function (GIF). Calculate f(2)f(2): f(2)=2(2)33+4(2)3+13f(2) = \frac{2(2)^3}{3} + \frac{4(2)}{3} + \frac{1}{3} f(2)=2(8)3+83+13f(2) = \frac{2(8)}{3} + \frac{8}{3} + \frac{1}{3} f(2)=163+83+13f(2) = \frac{16}{3} + \frac{8}{3} + \frac{1}{3} f(2)=16+8+13=253f(2) = \frac{16+8+1}{3} = \frac{25}{3}.

Now, find the greatest integer of f(2)f(2): [f(2)]=[253][f(2)] = \left[\frac{25}{3}\right] 253=8.333...\frac{25}{3} = 8.333... The greatest integer less than or equal to 8.333...8.333... is 88. [f(2)]=8[f(2)] = 8.