Solveeit Logo

Question

Mathematics Question on Determinants

A diet is to contain 3030 units of vitamin AA, 4040 units of vitamin BB and 2020 units of vitamin CC. Three types of foods F1F_{1}, F2F_{2} and F3F_{3} are available. 1 unit of food F1F_{1} contains 33 units of vitamin AA, 22 units of vitamin BB, 11 unit of vitamin CC. 11 unit of food F2F_{2} contains 11 unit of vitamin AA, 22 units of vitamin BB and 11 unit of vitamin CC. 11 unit of food F3F_{3} contains 55 units of vitamin AA, 33 units of vitamin BB and 22 units of vitamin CC. Represent the above situation algebraically and find the diet contains each types of food by using matrix method.

A

5,15,05, 15, 0

B

5,15,105, 15, 10

C

5,15,05, -15, 0

D

5,15,0-5, 15 , 0

Answer

5,15,05, 15, 0

Explanation

Solution

Let the diet contains xx units of food F1,yF_{1}, y units of food F2F_{2} and zz units of food F3F_{3}.
According to the given condition, we make the following equations
3x+y+5z=30,2x+2y+3z=403x + y + 5z = 30, 2x + 2y + 3z = 40 and x+y+2z=20x + y + 2z = 20
These algebraic equations can be written in matrix form as [315 223 112][x y z]=[30 40 20]\left[\begin{matrix}3&1&5\\\ 2&2&3\\\ 1&1&2\end{matrix}\right]\left[\begin{matrix}x\\\ y\\\ z\end{matrix}\right]=\left[\begin{matrix}30\\\ 40\\\ 20\end{matrix}\right] i.e., AX=B...(i)AX = B\quad...\left(i\right)
Now, A=315 223 112=3(43)1(43)+5(22)=31+0=20|A|=\left|\begin{matrix}3&1&5\\\ 2&2&3\\\ 1&1&2\end{matrix}\right|=3\left(4-3\right)-1\left(4-3\right)+5\left(2-2\right)=3-1+0=2\ne0
\therefore\quad There exists a unique solution X=A1BX=A^{-1}B.
adj(A)=[137 111 024]\therefore\quad adj\left(A\right)=\left[\begin{matrix}1&3&-7\\\ -1&1&1\\\ 0&-2&4\end{matrix}\right]
A1=adj(A)A=12[137 111 024]\therefore\quad A^{-1}=\frac{adj\,\left(A\right)}{\left|A\right|}=\frac{1}{2}\left[\begin{matrix}1&3&-7\\\ -1&1&1\\\ 0&-2&4\end{matrix}\right]
[x y z]=12[137 111 024][30 40 20]\Rightarrow\quad\left[\begin{matrix}x\\\ y\\\ z\end{matrix}\right]=\frac{1}{2}\left[\begin{matrix}1&3&-7\\\ -1&1&1\\\ 0&-2&4\end{matrix}\right]\left[\begin{matrix}30\\\ 40\\\ 20\end{matrix}\right]
On solving, we get x=5x = 5, y=15y = 15 and z=0z = 0.