Solveeit Logo

Question

Physics Question on Atoms

A diatomic molecule is made of two masses m1m_1 and m2m_2 which are separated by a distance rr. If we calculate its rotational energy by applying Bohr?'s rule of angular momentum quantization, its energy will be given by : (nn is an integer)

A

(m1+m2)2n2h22m12m22r2\frac{\left(m_{1}+m_{2}\right)^{2}n^{2}h^{2}}{2m_{1}^{2}m^{2}_{2}r^{2}}

B

n2h22(m1+m2)r2\frac{n^{2}h^{2}}{2\left(m_{1}+m_{2}\right)r^{2}}

C

2n2h2(m1+m2)r2\frac{2n^{2}h^{2}}{\left(m_{1}+m_{2}\right)r^{2}}

D

(m1+m2)n2h22m1m2r2\frac{\left(m_{1}+m_{2}\right)n^{2}h^{2}}{2m_{1}m_{2}r^{2}}

Answer

(m1+m2)n2h22m1m2r2\frac{\left(m_{1}+m_{2}\right)n^{2}h^{2}}{2m_{1}m_{2}r^{2}}

Explanation

Solution

m1r1=m2r2m_{1}r_{1}=m_{2}r_{2} r1+r2=rr_{1}+r_{2}=r r1=m2rm1+m2\therefore r_{1}=\frac{m_{2}r}{m_{1}+m_{2}} r2=m2rm1+m2r_{2}=\frac{m_{2}r}{m_{1}+m_{2}} ε=12Iω2\therefore \varepsilon=\frac{1}{2}I\omega^{2} =12(m1r12+m2r22).ω2............(i)=\frac{1}{2}\left(m_{1}r^{2}_{1}+m_{2}r_{2}^{2}\right).\omega^{2} ............\left(i\right) mvr=h2π=Iωmvr=\frac{h}{2\pi}=I\omega ω=nh2πIε=12I.n2h24π2I2\omega=\frac{nh}{2\pi I} \,\varepsilon = \frac{1}{2}I. \frac{n^{2}h^{2}}{4\pi^{2}I^{2}} =n2h28π21(m1r12+m2r22)=\frac{n^{2}h^{2}}{8\pi ^{2}} \frac{1}{\left(m_{1}r^{2}_{1}+m_{2}r^{2}_{2}\right)} =n2h28π21m1m22r02(m1+m2)2+m2m12r2(m1+m2)2=\frac{n^{2}h^{2}}{8\pi ^{2}} \frac{1}{m_{1} \frac{m^{2}_{2}r^{2}_{0}}{\left(m_{1}+m_{2}\right)^{2}} }+m_{2} \frac{m^{2}_{1}r^{2}}{\left(m_{1}+m_{2}\right)^{2}} =n2h28π2r2(m1+m2)2m1m2(m1+m2)=(m1m2)n2h28π2r2m1m2=\frac{n^{2}h^{2}}{8\pi^{2}r^{2}} \frac{\left(m_{1}+m_{2}\right)^{2}}{m_{1}m_{2}\left(m_{1}+m_{2}\right)}=\frac{\left(m_{1}m_{2}\right)n^{2}h^{2}}{8\pi^{2}r^{2}m_{1}m_{2}}