Solveeit Logo

Question

Physics Question on Thermodynamics

A diatomic gas (γ=1.4\gamma = 1.4) does 100 J of work in an isobaric expansion. The heat given to the gas is:

A

350 J

B

490 J

C

150 J

D

250 J

Answer

350 J

Explanation

Solution

For an isobaric process, the work done is:
w=PΔV=nRΔT.w = P \Delta V = nR \Delta T.
Given:
w=100J.w = 100 \, \text{J}.
The heat (QQ) supplied is:
Q=ΔU+w,Q = \Delta U + w,
where the internal energy change (ΔU\Delta U) for a diatomic gas is:
ΔU=f2nRΔT,\Delta U = \frac{f}{2} nR \Delta T,
with f=5f = 5 (degrees of freedom for a diatomic gas).
Substitute :
Q=f2nRΔT+nRΔT.Q = \frac{f}{2} nR \Delta T + nR \Delta T.
Simplify :
Q=(f2+1)nRΔT.Q = \left(\frac{f}{2} + 1\right) nR \Delta T.
Substitute ΔT\Delta T from w=nRΔTw = nR \Delta T:
Q=(f2+1)×w.Q = \left(\frac{f}{2} + 1\right) \times w.
Substitute f=5f = 5 and w=100Jw = 100 \, \text{J}:
Q=(52+1)×100=(72)×100=350J.Q = \left(\frac{5}{2} + 1\right) \times 100 = \left(\frac{7}{2}\right) \times 100 = 350 \, \text{J}.
Thus, the heat given to the gas is:
Q=350J.Q = 350 \, \text{J}.