Solveeit Logo

Question

Physics Question on Kinetic Energy

A deuteron of kinetic energy 50keV50 \,keV is describing a circular orbit of radius 0.50.5 metre in a plane perpendicular to the magnetic field BB. The kinetic energy of the proton that describes a circular orbit of radius 0.50.5 metre in the same plane with the same BB is

A

25 ke V

B

50 ke V

C

200 ke V

D

100 ke V

Answer

100 ke V

Explanation

Solution

For a charged particle orbiting in a circular path in a magnetic field mv2r=Bqvv=Bqrm\frac{ mv ^{2}}{ r }= Bqv \Rightarrow v =\frac{ Bqr }{ m } or,mv2=Bqvror , mv ^{2}= Bqvr Also, EK=12mv2=12BqvrE _{ K }=\frac{1}{2} mv ^{2}=\frac{1}{2} Bqvr =Bqr2Bqrm=B2q2r22m= Bq \frac{ r }{2} \cdot \frac{ Bqr }{ m }=\frac{ B ^{2} q ^{2} r ^{2}}{2 m } For deuteron, E1=B2q2r22×2mE_{1}=\frac{B^{2} q^{2} r^{2}}{2 \times 2 m} For proton, E2=B2q2r22mE_{2}=\frac{B^{2} q^{2} r^{2}}{2 m} E1E2=12\frac{E_{1}}{E_{2}}=\frac{1}{2} 50keVE2=12 \Rightarrow \frac{50 keV }{E_{2}}=\frac{1}{2} E2=100keV. \Rightarrow E_{2}=100\, keV .