Solveeit Logo

Question

Question: A determinant is given as follows...

A determinant is given as follows

Answer

The determinant is divisible by x².

Explanation

Solution

The problem statement "A determinant is given as follows" is incomplete as it does not provide the determinant. Based on the provided similar_question, which itself contains a typo, the intended determinant is assumed to be the corrected one from the similar_question's explanation:

Δ=a2+xabacabb2+xbcacbcc2+x\Delta = \begin{vmatrix} a^2+x & ab & ac \\ ab & b^2+x & bc \\ ac & bc & c^2+x \end{vmatrix}

The question implicitly asks to analyze this determinant, likely to find its factors or express its value.

Solution:

The determinant can be evaluated using properties of matrices or by direct expansion with strategic row/column operations.

Method 1: Using Matrix Eigenvalues (More advanced but elegant)

Let the given determinant be Δ=det(M+xI)\Delta = \det(M+xI), where II is the identity matrix and MM is the matrix: M=(a2abacabb2bcacbcc2)M = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} This matrix MM can be expressed as the outer product of a vector v=(abc)\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} with itself, i.e., M=vvTM = \mathbf{v}\mathbf{v}^T. A matrix of the form vvT\mathbf{v}\mathbf{v}^T (a rank-1 matrix) has only one non-zero eigenvalue, which is vTv=a2+b2+c2\mathbf{v}^T\mathbf{v} = a^2+b^2+c^2. The other eigenvalues are zero. For a 3x3 matrix, the eigenvalues of MM are λ1=a2+b2+c2\lambda_1 = a^2+b^2+c^2, λ2=0\lambda_2 = 0, and λ3=0\lambda_3 = 0.

The eigenvalues of M+xIM+xI are λ1+x,λ2+x,λ3+x\lambda_1+x, \lambda_2+x, \lambda_3+x. So, the eigenvalues of the matrix corresponding to Δ\Delta are (a2+b2+c2+x)(a^2+b^2+c^2+x), xx, and xx. The determinant of a matrix is the product of its eigenvalues. Therefore, Δ=(a2+b2+c2+x)xx\Delta = (a^2+b^2+c^2+x) \cdot x \cdot x Δ=x2(a2+b2+c2+x)\Delta = x^2(a^2+b^2+c^2+x)

Method 2: Using Row/Column Operations

  1. Multiply the first row by aa, the second row by bb, and the third row by cc. To keep the determinant value unchanged, divide the entire determinant by abcabc: Δ=1abca(a2+x)a2ba2cb(ab)b(b2+x)b2cc(ac)c(bc)c(c2+x)\Delta = \frac{1}{abc} \begin{vmatrix} a(a^2+x) & a^2b & a^2c \\ b(ab) & b(b^2+x) & b^2c \\ c(ac) & c(bc) & c(c^2+x) \end{vmatrix}
  2. Take out common factors aa from the first column, bb from the second column, and cc from the third column. The abcabc in the denominator cancels out: Δ=abcabca2+xa2a2b2b2+xb2c2c2c2+x\Delta = \frac{abc}{abc} \begin{vmatrix} a^2+x & a^2 & a^2 \\ b^2 & b^2+x & b^2 \\ c^2 & c^2 & c^2+x \end{vmatrix} Let A=a2A=a^2, B=b2B=b^2, C=c2C=c^2. The determinant becomes: Δ=A+xAABB+xBCCC+x\Delta = \begin{vmatrix} A+x & A & A \\ B & B+x & B \\ C & C & C+x \end{vmatrix}
  3. Perform column operations C1C1C2C_1 \to C_1 - C_2 and C2C2C3C_2 \to C_2 - C_3: Δ=(A+x)AAAAB(B+x)(B+x)BBCCC(C+x)C+x\Delta = \begin{vmatrix} (A+x)-A & A-A & A \\ B-(B+x) & (B+x)-B & B \\ C-C & C-(C+x) & C+x \end{vmatrix} Δ=x0AxxB0xC+x\Delta = \begin{vmatrix} x & 0 & A \\ -x & x & B \\ 0 & -x & C+x \end{vmatrix}
  4. Expand the determinant along the first column (C1C_1): Δ=xxBxC+x(x)0AxC+x+0()\Delta = x \cdot \begin{vmatrix} x & B \\ -x & C+x \end{vmatrix} - (-x) \cdot \begin{vmatrix} 0 & A \\ -x & C+x \end{vmatrix} + 0 \cdot (\dots) Δ=x[x(C+x)B(x)]+x[0(C+x)A(x)]\Delta = x[x(C+x) - B(-x)] + x[0(C+x) - A(-x)] Δ=x[xC+x2+Bx]+x[Ax]\Delta = x[xC + x^2 + Bx] + x[Ax] Δ=x2C+x3+x2B+x2A\Delta = x^2C + x^3 + x^2B + x^2A Factor out x2x^2: Δ=x2(A+B+C+x)\Delta = x^2(A+B+C+x)
  5. Substitute back A=a2,B=b2,C=c2A=a^2, B=b^2, C=c^2: Δ=x2(a2+b2+c2+x)\Delta = x^2(a^2+b^2+c^2+x)

Both methods yield the same result. From the expression Δ=x2(a2+b2+c2+x)\Delta = x^2(a^2+b^2+c^2+x), it is clear that the determinant is divisible by x2x^2.

Explanation of the solution:

The determinant is assumed to be Δ=a2+xabacabb2+xbcacbcc2+x\Delta = \begin{vmatrix} a^2+x & ab & ac \\ ab & b^2+x & bc \\ ac & bc & c^2+x \end{vmatrix}. This determinant can be simplified by first transforming it to a known form. Multiply R1R_1 by aa, R2R_2 by bb, R3R_3 by cc, and divide the determinant by abcabc. Then, take out common factors aa from C1C_1, bb from C2C_2, cc from C3C_3. This results in: Δ=a2+xa2a2b2b2+xb2c2c2c2+x\Delta = \begin{vmatrix} a^2+x & a^2 & a^2 \\ b^2 & b^2+x & b^2 \\ c^2 & c^2 & c^2+x \end{vmatrix} Let A=a2,B=b2,C=c2A=a^2, B=b^2, C=c^2. So, Δ=A+xAABB+xBCCC+x\Delta = \begin{vmatrix} A+x & A & A \\ B & B+x & B \\ C & C & C+x \end{vmatrix}. Apply column operations C1C1C2C_1 \to C_1 - C_2 and C2C2C3C_2 \to C_2 - C_3: Δ=x0AxxB0xC+x\Delta = \begin{vmatrix} x & 0 & A \\ -x & x & B \\ 0 & -x & C+x \end{vmatrix} Expand along C1C_1: Δ=x(x(C+x)B(x))(x)(0(C+x)A(x))\Delta = x(x(C+x) - B(-x)) - (-x)(0(C+x) - A(-x)) Δ=x(xC+x2+Bx)+x(Ax)\Delta = x(xC+x^2+Bx) + x(Ax) Δ=x2C+x3+x2B+x2A=x2(A+B+C+x)\Delta = x^2C+x^3+x^2B+x^2A = x^2(A+B+C+x) Substitute back A=a2,B=b2,C=c2A=a^2, B=b^2, C=c^2: Δ=x2(a2+b2+c2+x)\Delta = x^2(a^2+b^2+c^2+x) From this expression, it is evident that Δ\Delta is divisible by x2x^2.