Solveeit Logo

Question

Question: A determinant is given as following: \(\Delta =\left| \begin{matrix} \sin \theta \cos \phi & ...

A determinant is given as following:
Δ=sinθcosϕsinθsinϕcosθ cosθcosϕcosθsinϕsinθ sinθsinϕsinθcosϕ0 \Delta =\left| \begin{matrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\\ -\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\\ \end{matrix} \right|
Then,
A. Δ\Delta is independent of θ\theta
B. Δ\Delta is independent of ϕ\phi
C. Δ\Delta is constant.
D. dΔdθθ=π2=0{{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=0

Explanation

Solution

Hint: Find out the value of the determinant and check if the value is a constant or free from θ\theta or free from ϕ\phi . Then differentiate the result with respect to θ\theta and check if the result of the derivative at θ=π2\theta =\dfrac{\pi }{2} is zero or not.

“Complete step-by-step answer:”
The determinant is given as follows:
Δ=sinθcosϕsinθsinϕcosθ cosθcosϕcosθsinϕsinθ sinθsinϕsinθcosϕ0 \Delta =\left| \begin{matrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\\ -\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\\ \end{matrix} \right|
Now let us first find the value of the determinant.
Δ=sinθcosϕcosθsinϕsinθ sinθcosϕ0 sinθsinϕcosθcosϕsinθ sinθsinϕ0 +cosθcosθcosϕcosθsinϕ sinθsinϕsinθcosϕ \Delta =\sin \theta \cos \phi \left| \begin{matrix} \cos \theta \sin \phi & -\sin \theta \\\ \sin \theta \cos \phi & 0 \\\ \end{matrix} \right|-\sin \theta \sin \phi \left| \begin{matrix} \cos \theta \cos \phi & -\sin \theta \\\ -\sin \theta \sin \phi & 0 \\\ \end{matrix} \right|+\cos \theta \left| \begin{matrix} \cos \theta \cos \phi & \cos \theta \sin \phi \\\ -\sin \theta \sin \phi & \sin \theta \cos \phi \\\ \end{matrix} \right| Now we will take the order of two determinants one by one and solve them.
At first we have,
cosθsinϕsinθ sinθcosϕ0 =(cosθsinϕ×0)(sinθ)×sinθcosϕ=sin2θcosϕ\left| \begin{matrix} \cos \theta \sin \phi & -\sin \theta \\\ \sin \theta \cos \phi & 0 \\\ \end{matrix} \right|=(\cos \theta \sin \phi \times 0)-(-\sin \theta )\times \sin \theta \cos \phi ={{\sin }^{2}}\theta \cos \phi
Multiplying the above determinant by sinθcosϕ\sin \theta \cos \phi ,sinθcosϕcosθsinϕsinθ sinθcosϕ0 =sin2θcosϕ×sinθcosϕ=sin3θcos2ϕ\sin \theta \cos \phi \left| \begin{matrix} \cos \theta \sin \phi & -\sin \theta \\\ \sin \theta \cos \phi & 0 \\\ \end{matrix} \right|={{\sin }^{2}}\theta \cos \phi \times \sin \theta \cos \phi ={{\sin }^{3}}\theta {{\cos }^{2}}\phi
Let us take the second determinant.
cosθcosϕsinθ sinθsinϕ0 =(cosθcosϕ×0)(sinθ)×(sinθsinϕ)=sin2θsinϕ\left| \begin{matrix} \cos \theta \cos \phi & -\sin \theta \\\ -\sin \theta \sin \phi & 0 \\\ \end{matrix} \right|=(\cos \theta \cos \phi \times 0)-\left( -\sin \theta \right)\times \left( -\sin \theta \sin \phi \right)=-{{\sin }^{2}}\theta \sin \phi
Multiplying the above determinant by sinθsinϕ-\sin \theta \sin \phi ,
sinθsinϕcosθcosϕsinθ sinθsinϕ0 =(sin2θsinϕ)×(sinθsinϕ)=sin3θsin2ϕ-\sin \theta \sin \phi \left| \begin{matrix} \cos \theta \cos \phi & -\sin \theta \\\ -\sin \theta \sin \phi & 0 \\\ \end{matrix} \right|=(-{{\sin }^{2}}\theta \sin \phi )\times \left( -\sin \theta \sin \phi \right)={{\sin }^{3}}\theta {{\sin }^{2}}\phi
And the third determinant,
cosθcosϕcosθsinϕ sinθsinϕsinθcosϕ =cosθsinθcos2ϕ+cosθsinθsin2ϕ=sinθcosθ\left| \begin{matrix} \cos \theta \cos \phi & \cos \theta \sin \phi \\\ -\sin \theta \sin \phi & \sin \theta \cos \phi \\\ \end{matrix} \right|=\cos \theta \sin \theta {{\cos }^{2}}\phi +\cos \theta \sin \theta {{\sin }^{2}}\phi =\sin \theta \cos \theta , taking sinθcosθ\sin \theta \cos \theta common from both the terms and putting sin2ϕ+cos2ϕ=1{{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1 .
Multiplying the above determinant by cosθ\cos \theta ,
cosθcosθcosϕcosθsinϕ sinθsinϕsinθcosϕ =sinθcosθ×cosθ=sinθcos2θ\cos \theta \left| \begin{matrix} \cos \theta \cos \phi & \cos \theta \sin \phi \\\ -\sin \theta \sin \phi & \sin \theta \cos \phi \\\ \end{matrix} \right|=\sin \theta \cos \theta \times \cos \theta =\sin \theta {{\cos }^{2}}\theta
By adding all the values we will get,
Δ=sin3θcos2ϕ+sin3θsin2ϕ+sinθcos2θ\Delta ={{\sin }^{3}}\theta {{\cos }^{2}}\phi +{{\sin }^{3}}\theta {{\sin }^{2}}\phi +\sin \theta {{\cos }^{2}}\theta
Take sin3θ{{\sin }^{3}}\theta common from the first two terms,
Δ=sin3θ(cos2ϕ+sin2ϕ)+sinθcos2θ\Rightarrow \Delta ={{\sin }^{3}}\theta ({{\cos }^{2}}\phi +{{\sin }^{2}}\phi )+\sin \theta {{\cos }^{2}}\theta
Put, sin2ϕ+cos2ϕ=1{{\sin }^{2}}\phi +{{\cos }^{2}}\phi =1
Δ=sin3θ+sinθcos2θ\Rightarrow \Delta ={{\sin }^{3}}\theta +\sin \theta {{\cos }^{2}}\theta
Take sinθ\sin \theta common from both the terms,
Δ=sinθ(sin2θ+cos2θ)=sinθ\Rightarrow \Delta =\sin \theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)=\sin \theta
Hence the value of the determinant is sinθ\sin \theta .
Therefore the value is not a constant term. So option (c) is not correct.
It is free from ϕ\phi , that means the value of the determinant is independent of ϕ\phi .
Therefore, option (b) is correct.
The value of the determinant is sinθ\sin \theta . Therefore the value of the determinant is dependent on θ\theta .
Hence, option (a) is not correct.
Now to check option (d) let us differentiate the result with respect to θ\theta ,
dΔdθ=ddθ(sinθ)=cosθ\dfrac{d\Delta }{d\theta }=\dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta
dΔdθθ=π2=cos(π2)=0{{\left. \dfrac{d\Delta }{d\theta } \right|}_{\theta =\dfrac{\pi }{2}}}=\cos \left( \dfrac{\pi }{2} \right)=0
Hence, option (d) is correct.
Therefore, option (b) and option (d) are correct.

Note: Find the value of the determinant very carefully. Take the negative and positive sign correctly while breaking the determinant.Use Trigonometric identities and formulas for simplification.