Solveeit Logo

Question

Physics Question on Magnetism and matter

A deflection magnetometer is adjusted in the usual way. When a magnet is introduced, the deflection observed is θ\theta, and the period of oscillation of the needle in the magnetometer is TT. When the magnet is removed, the period of oscillation is T0T_0. The relation between TT and T0T_0 is

A

T2=T02cosθT^{ 2}=T^{ 2}_{0} cos\theta

B

T=T0cosθT =T_{0} cos\theta

C

T=T0cosθT =\frac{T_{0}}{cos\theta }

D

T2=T02cosθT^{ 2} =\frac{T^{ 2}_{0}}{cos\theta }

Answer

T2=T02cosθT^{ 2}=T^{ 2}_{0} cos\theta

Explanation

Solution

In the usual setting of deflection magnetometer, field due to magnet (F) and horizontal component (H) of earth?s field are perpendicular to each other. Therefore, the net field on the magnetic needle is F2+H2\sqrt{F^{2}+H^{2}} T=2π1MF2+H2(i)\therefore\quad T=2\pi\sqrt{\frac{1}{M\sqrt{F^{2}+H^{2}}}}\quad\quad\quad\quad\quad\dots\left(i\right) When the magnet is removed, T0=2π1MH(ii)T_{0}=2\pi\sqrt{\frac{1}{MH}}\quad \quad \quad \quad \quad\quad\quad\quad\quad\quad \dots \left(ii\right) Also, FH=tanθ\, \frac{F}{H} = tan\theta Dividing (i) by (ii), we get TT0=HF2+H2\frac{T}{T_{0}}=\sqrt{\frac{H}{\sqrt{F^{2}+H^{2}}}} =HH2tan2θ+H2=HHsec2θ=cosθ=\sqrt{\frac{H}{\sqrt{H^{2}\,tan^{2}\,\theta+H^{2}}}}=\sqrt{\frac{H}{H\sqrt{sec^{2}\,\theta}}}=\sqrt{cos\theta} T2T02=cosθT2=T02cosθ\Rightarrow\quad \frac{T^{2}}{T^{2}_{0}}=cos\,\theta\quad\quad\quad\therefore\quad T^{2}=T^{2}_{0}\,cos\theta