Solveeit Logo

Question

Question: A cylindrical rod is reformed to half of its original length keeping volume constant. If its resista...

A cylindrical rod is reformed to half of its original length keeping volume constant. If its resistance before this change were R, then the resistance after reformation of rod will be

A

R

B

R/4

C

3R/4

D

R/2

Answer

R/4

Explanation

Solution

: The resistance of rod before reformation

R1=R=ρl1πr12\mathrm { R } _ { 1 } = \mathrm { R } = \frac { \rho \mathrm { l } _ { 1 } } { \pi \mathrm { r } _ { 1 } ^ { 2 } }

Now the rod is reformed such that,

πr12l1=πr22l2\therefore \pi \mathrm { r } _ { 1 } ^ { 2 } \mathrm { l } _ { 1 } = \pi \mathrm { r } _ { 2 } ^ { 2 } \mathrm { l } _ { 2 } (Volume remains constant,

or …(i)

Now the resistance of the rod after reformation

R1R2=ρl1πr12/ρl1πr22=l112×r22r12\therefore \frac { \mathrm { R } _ { 1 } } { \mathrm { R } _ { 2 } } = \frac { \rho \mathrm { l } _ { 1 } } { \pi \mathrm { r } _ { 1 } ^ { 2 } } / \frac { \rho \mathrm { l } _ { 1 } } { \pi \mathrm { r } _ { 2 } ^ { 2 } } = \frac { \mathrm { l } _ { 1 } } { 1 _ { 2 } } \times \frac { \mathrm { r } _ { 2 } ^ { 2 } } { \mathrm { r } _ { 1 } ^ { 2 } }

or, (using (i))

R1R2=4\frac { \mathrm { R } _ { 1 } } { \mathrm { R } _ { 2 } } = 4

R2=R4\therefore \mathrm { R } _ { 2 } = \frac { \mathrm { R } } { 4 }