Solveeit Logo

Question

Question: A cylinder of \[\text{10 L}\]capacity at \[\text{300 K}\]containing the \[\text{He}\]gas is used to ...

A cylinder of 10 L\text{10 L}capacity at 300 K\text{300 K}containing the He\text{He}gas is used to fill balloons. The cylinder recorded a pressure of10-2 bar\text{1}{{\text{0}}^{\text{-2 }}}\text{bar}. The number of He\text{He}atoms present in the cylinder is:
A) 4.82×10214.82\times {{10}^{21}}
B) 2.41×10232.41\times {{10}^{23}}
C) 2.41×10212.41\times {{10}^{21}}
D) 4.82×10234.82\times {{10}^{23}}

Explanation

Solution

The question can be solved using the concept of ideal gas equation PV=nRT\text{PV=nRT}.The ideal gas equation relates the pressure , volume , temperature, and several moles of gas with each other. The number of particles present in the gas is found by the relation of Avogadro's number 6.023 !!×!! 1023mol-1\text{6}\text{.023 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}}\text{mo}{{\text{l}}^{\text{-1}}} with the number of moles. Which is n=Number of partilcles(NA)\text{n=}\dfrac{\text{Number of partilcles}}{\text{(}{{\text{N}}_{\text{A}}}\text{)}}

Complete step by step solution:
We are given the data as:
Pressure on the cylinder, P=10-2bar\text{P=1}{{\text{0}}^{\text{-2}}}\text{bar}
The capacity of the cylinder,V=10L\text{V=10L}
Temperature,T=300K\text{T=300K}
We have to find the number of He\text{He}atoms present in the cylinder.
We know the ideal gas equation as:
PV=nRT\text{PV=nRT}
Where P is the pressure of the gas, V is the volume of the gas, n stands for the amount of gas measured in terms of moles, R is the gas constant and T stands for the absolute temperature in kelvin.
Let’s first rearrange the equation concerning the number of moles (n)
n=PVRT\text{n=}\dfrac{\text{PV}}{\text{RT}}
Now substitute the values from the given data. We get,
n=(10-2 bar )(10 L)(8.314×10-2 L bar K-1mol-1)(300K)\text{n=}\dfrac{\text{(1}{{\text{0}}^{\text{-2}}}\text{ bar )(10 L)}}{\text{(8}\text{.314}\times \text{1}{{\text{0}}^{\text{-2}}}\text{ L bar }{{\text{K}}^{\text{-1}}}\text{mo}{{\text{l}}^{\text{-1}}}\text{)(300K)}}
Or n=(10-2 bar )(10 L)(0.083 L bar K-1mol-1)(300K)\text{n=}\dfrac{\text{(1}{{\text{0}}^{\text{-2}}}\text{ bar )(10 L)}}{\text{(0}\text{.083 L bar }{{\text{K}}^{\text{-1}}}\text{mo}{{\text{l}}^{\text{-1}}}\text{)(300K)}}
We know that an Avogadro's number is the total number of particles present per mole of the substance. The Avogadro number is equal to6.023 !!×!! 1023mol-1\text{6}\text{.023 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}}\text{mo}{{\text{l}}^{\text{-1}}}.
Avogadro's number is related to the number of particles and the number of moles by the relation.
No.of moles=Number of partilclesAvagadro !!!! s no(NA)\text{No}\text{.of moles=}\dfrac{\text{Number of partilcles}}{\text{Avagadro }\\!\\!'\\!\\!\text{ s no(}{{\text{N}}_{\text{A}}}\text{)}}
We have to find out the number of helium He\text{He}particles present in the cylinder.
Number of partilcles of He=No.of moles of He ×Avagadro !!!! s no(NA)\text{Number of partilcles of He=No}\text{.of moles of He }\times \text{Avagadro }\\!\\!'\\!\\!\text{ s no(}{{\text{N}}_{\text{A}}}\text{)}
Number of partilcles of He=(10-2 bar )(10 L)(0.083 L bar K-1mol-1)(300K) !!×!! Avagadro !!!! s no.(NA)\text{Number of partilcles of He=}\dfrac{\text{(1}{{\text{0}}^{\text{-2}}}\text{ bar )(10 L)}}{\text{(0}\text{.083 L bar }{{\text{K}}^{\text{-1}}}\text{mo}{{\text{l}}^{\text{-1}}}\text{)(300K)}}\text{ }\\!\\!\times\\!\\!\text{ Avagadro }\\!\\!'\\!\\!\text{ s no}\text{.(}{{\text{N}}_{\text{A}}}\text{)}
Since Avogadro's number is6.023 !!×!! 1023mol-1\text{6}\text{.023 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}}\text{mo}{{\text{l}}^{\text{-1}}}. We get,
Number of partilcles of He=(10-2 bar )(10 L)(0.083 L bar K-1mol-1)(300K) ×6.023×1023mol-1\text{Number of partilcles of He=}\dfrac{\text{(1}{{\text{0}}^{\text{-2}}}\text{ bar )(10 L)}}{\text{(0}\text{.083 L bar }{{\text{K}}^{\text{-1}}}\text{mo}{{\text{l}}^{\text{-1}}}\text{)(300K)}}\text{ }\times \text{6}\text{.023}\times \text{1}{{\text{0}}^{\text{23}}}\text{mo}{{\text{l}}^{\text{-1}}}
Number of partilcles of He=6.023×102224.9 \text{Number of partilcles of He=}\dfrac{\text{6}\text{.023}\times \text{1}{{\text{0}}^{\text{22}}}}{24.9}\text{ }
Or Number of partilcles of He = 2.41×1021 Atoms\text{Number of partilcles of He = 2}\text{.41}\times \text{1}{{\text{0}}^{\text{21}}}\text{ Atoms}
Hence, the cylinder of capacity 10L\text{10L}at 300K\text{300K}contains the2.41×1021 Atoms\text{2}\text{.41}\times \text{1}{{\text{0}}^{\text{21}}}\text{ Atoms}.

Hence, (C) is the correct option.

Note: The value of gas constant R depends on the unit of pressure. The value for the gas constant is as listed below,

Values of RUnits
8.205×1028.205\times {{10}^{-2}}L.atm.K-1.mol-1\text{L}\text{.atm}\text{.}{{\text{K}}^{\text{-1}}}\text{.mo}{{\text{l}}^{\text{-1}}}
8.3147×1028.3147\times {{10}^{-2}}L.bar.K-1.mol-1\text{L}\text{.bar}\text{.}{{\text{K}}^{\text{-1}}}\text{.mo}{{\text{l}}^{\text{-1}}}
8.3148.314L.kPa.K-1.mol-1\text{L}\text{.kPa}\text{.}{{\text{K}}^{\text{-1}}}\text{.mo}{{\text{l}}^{\text{-1}}}
8.3148.314J.K-1.mol-1\text{J}\text{.}{{\text{K}}^{\text{-1}}}\text{.mo}{{\text{l}}^{\text{-1}}}
62.36462.364L.Torr.K-1.mol-1\text{L}\text{.Torr}\text{.}{{\text{K}}^{\text{-1}}}\text{.mo}{{\text{l}}^{\text{-1}}}
1.98721.9872cal.K-1.mol-1\text{cal}\text{.}{{\text{K}}^{\text{-1}}}\text{.mo}{{\text{l}}^{\text{-1}}}

Use the appropriate value of the gas constant as per the requirement. Here we use the gas constant value for the pressure in the bar.