Solveeit Logo

Question

Physics Question on rotational motion

A cylinder is rolling down an inclined plane of inclination 6060^\circ. Its acceleration during rolling down will be x3m/s2\frac{x}{\sqrt{3}} \, \text{m/s}^2, where x=x = _____. (Use g=10m/s2g = 10 \, \text{m/s}^2).

Answer

Step 1: Formula for Acceleration in Rolling Motion:

- For a cylinder rolling down an incline, the acceleration aa is given by:

a=gsinθ1+IcmMR2a = \frac{g \sin \theta}{1 + \frac{I_{cm}}{MR^2}}

- For a solid cylinder, Icm=12MR2I_{cm} = \frac{1}{2} MR^2.

Step 2: Substitute Values:

a=gsinθ1+12a = \frac{g \sin \theta}{1 + \frac{1}{2}}

- Given g=10m/s2g = 10 \, \text{m/s}^2 and θ=60\theta = 60^\circ (so sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2}):

a=10×321+12a = \frac{10 \times \frac{\sqrt{3}}{2}}{1 + \frac{1}{2}}

Step 3: Calculate aa:

a=10×3232=1033=x3a = \frac{10 \times \frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{10 \sqrt{3}}{3} = \frac{x}{\sqrt{3}}

- Therefore, x=10x = 10.

So, the correct answer is: x=10x = 10