Solveeit Logo

Question

Question: A cyclic quadrilateral ABCD of area \(\frac { 3 \sqrt { 3 } } { 4 }\) is inscribed in a unit circle....

A cyclic quadrilateral ABCD of area 334\frac { 3 \sqrt { 3 } } { 4 } is inscribed in a unit circle. If one of its sides AB = 1 and the diagonal BD = 3\sqrt { 3 } then the lengths of the other sides are

A

2, 1, 1

B

2, 1, 2

C

3, 1, 2

D

None of these

Answer

2, 1, 1

Explanation

Solution

By sine formula in ABC\triangle A B C, 3sinA=2R3sinA=2\frac { \sqrt { 3 } } { \sin A } = 2 R \Rightarrow \frac { \sqrt { 3 } } { \sin A } = 2

sinA=32\sin A = \frac { \sqrt { 3 } } { 2 }A=π3A = \frac { \pi } { 3 }

Now, AB=x=1A B = x = 1

By cosine formula in ABD\triangle A B D cosπ3=x2+y232xy\cos \frac { \pi } { 3 } = \frac { x ^ { 2 } + y ^ { 2 } - 3 } { 2 x y }

12=1+y232y\frac { 1 } { 2 } = \frac { 1 + y ^ { 2 } - 3 } { 2 y }y=y22y = y ^ { 2 } - 2

y2y2=0y ^ { 2 } - y - 2 = 0(y2)(y+1)=0( y - 2 ) ( y + 1 ) = 0y=2y = 2 [y1\because y \neq - 1]

\therefore Since A=60\angle A = 60 ^ { \circ } C=120\therefore \angle C = 120 ^ { \circ }

In BDC,3=p2+q22pqcos120\triangle B D C , 3 = p ^ { 2 } + q ^ { 2 } - 2 p q \cos 120 ^ { \circ }

3=p2+q2+pq3 = p ^ { 2 } + q ^ { 2 } + p q .........(i)

Also area of quadrilateral ABCD=334A B C D = \frac { 3 \sqrt { 3 } } { 4 }

\therefore

34pq=33432=33234=34\frac { \sqrt { 3 } } { 4 } p q = \frac { 3 \sqrt { 3 } } { 4 } - \frac { \sqrt { 3 } } { 2 } = \frac { 3 \sqrt { 3 } - 2 \sqrt { 3 } } { 4 } = \frac { \sqrt { 3 } } { 4 }pq=1p q = 1

\therefore(i) gives, 3=p2+q2+13 = p ^ { 2 } + q ^ { 2 } + 1

p2+q2=2p ^ { 2 } + q ^ { 2 } = 2, [p,q>0][ p , q > 0 ]

\therefore p2+1p2=2p ^ { 2 } + \frac { 1 } { p ^ { 2 } } = 2p42p2+1=0p ^ { 4 } - 2 p ^ { 2 } + 1 = 0(p21)2=0\left( p ^ { 2 } - 1 \right) ^ { 2 } = 0

p=1,q=1\therefore p = 1 , q = 1

AB=1,AD=2,BC=CD=1\therefore A B = 1 , A D = 2 , B C = C D = 1.