Question
Question: A cyclic quadrilateral ABCD of area \(\frac { 3 \sqrt { 3 } } { 4 }\) is inscribed in a unit circle....
A cyclic quadrilateral ABCD of area 433 is inscribed in a unit circle. If one of its sides AB = 1 and the diagonal BD = 3 then the lengths of the other sides are
A
2, 1, 1
B
2, 1, 2
C
3, 1, 2
D
None of these
Answer
2, 1, 1
Explanation
Solution
By sine formula in △ABC, sinA3=2R⇒sinA3=2
⇒ sinA=23 ⇒ A=3π
Now, AB=x=1
By cosine formula in △ABD cos3π=2xyx2+y2−3
⇒ 21=2y1+y2−3 ⇒ y=y2−2
⇒ y2−y−2=0 ⇒ (y−2)(y+1)=0 ⇒ y=2 [∵y=−1]
∴ Since ∠A=60∘ ∴∠C=120∘
In △BDC,3=p2+q2−2pqcos120∘
⇒ 3=p2+q2+pq .........(i)
Also area of quadrilateral ABCD=433
∴
⇒ 43pq=433−23=433−23=43 ⇒ pq=1
∴(i) gives, 3=p2+q2+1
⇒ p2+q2=2, [p,q>0]
∴ p2+p21=2 ⇒ p4−2p2+1=0 ⇒ (p2−1)2=0
⇒ ⇒ ∴p=1,q=1
∴AB=1,AD=2,BC=CD=1.
