Solveeit Logo

Question

Question: A cyclic process for 1 mole of an ideal gas is shown in the V-T diagram. The work done in AB, BC and...

A cyclic process for 1 mole of an ideal gas is shown in the V-T diagram. The work done in AB, BC and CA respectively are

A

0, RT1ln (V1V2)\left( \frac { V _ { 1 } } { V _ { 2 } } \right) , R(T1 – T2)

B

R, (T1 – T2)R, RT1ln (V1V2)\left( \frac { V _ { 1 } } { V _ { 2 } } \right)

C

0, RT2ln, (V1 – V2)

D

0, RT2ln (V1V2)\left( \frac { V _ { 1 } } { V _ { 2 } } \right) , R(T1 – T2)

Answer

0, RT2ln, (V1 – V2)

Explanation

Solution

:

During AB, process is isochoric.

ΔV=0W=0\therefore \Delta V = 0 \therefore W = 0

During BC, process is isothermal

ΔT=0\therefore \Delta T = 0 W=RT2lnV2V1\therefore W = R T _ { 2 } \ln \frac { V _ { 2 } } { V _ { 1 } }

During CA, process is isobaric, so pressure is

constant W=P(V1V2)\therefore W = P \left( V _ { 1 } - V _ { 2 } \right)

But PV1=RT1P V _ { 1 } = R T _ { 1 }

P=RT1V1=RT2V2\therefore P = \frac { R T _ { 1 } } { V _ { 1 } } = \frac { R T _ { 2 } } { V _ { 2 } } W=RT1V1(V1V2)=RT2V2(V1V2)\therefore W = \frac { R T _ { 1 } } { V _ { 1 } } \left( V _ { 1 } - V _ { 2 } \right) = \frac { R T _ { 2 } } { V _ { 2 } } \left( V _ { 1 } - V _ { 2 } \right)