Solveeit Logo

Question

Question: A curve parametrically given by \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\], where \[t\in R\]. For what val...

A curve parametrically given by x=t+t3x=t+{{t}^{3}}and y=t2y={{t}^{2}}, where tRt\in R. For what value(s) of tt is dydx=12\dfrac{dy}{dx}=\dfrac{1}{2}?
(A) 13\dfrac{1}{3}
(B) 22
(C) 33
(D) 11

Explanation

Solution

Hint: If x=f(t)x=f(t) and y=g(t)y=g(t) then dydx=dydt÷dxdt\dfrac{dy}{dx}=\dfrac{dy}{dt}\div \dfrac{dx}{dt}.

Complete step-by-step answer:
The given equation of the curve is x=t+t3x=t+{{t}^{3}}and y=t2y={{t}^{2}}.
We can clearly see that yy and xx are not given in terms of each other but in terms of another parameter tt . Hence, dydx\dfrac{dy}{dx} cannot be directly calculated.
So, we can write dydx=dydtdtdx.........\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........equation(1)(1)
Now, to find dydx\dfrac{dy}{dx}, we need to find the values of dydt\dfrac{dy}{dt} and dtdx\dfrac{dt}{dx}.
Now, we have y=t2y={{t}^{2}}
We will differentiate yy with respect to tt.
On differentiating yy with respect to tt, we get ,
\Rightarrow dydt=ddt(t2)=2t\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t

Now, we will differentiate xx with respect to tt.
On differentiating xx with respect to tt, we get,
\Rightarrow dxdt=ddt(t+t3)=1+3t2\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}

Now, we know inverse function theorem of differentiation says that if x=f(t)x=f(t) and dxdt=x\dfrac{dx}{dt}=x' then, dtdx=t=1x\dfrac{dt}{dx}=t'=\dfrac{1}{x'} .
So, we can write dtdx=1dxdt=11+3t2\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}
Now, to find the value of dydx\dfrac{dy}{dx} , we will substitute the values of dydt\dfrac{dy}{dt} and dtdx\dfrac{dt}{dx}in equation(1)(1).
On substituting the values of dydt\dfrac{dy}{dt} and dtdx\dfrac{dt}{dx}in equation(1)(1), we get ,$$$$
\Rightarrow dydx=2t×11+3t2\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}
=2t1+3t2=\dfrac{2t}{1+3{{t}^{2}}}
Now, it is given that the value of dydx\dfrac{dy}{dx} is equal to 12\dfrac{1}{2}.
So, we can write

& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\\ & \Rightarrow 4t=1+3{{t}^{2}} \\\ \end{aligned}$$ $\Rightarrow$ $$3{{t}^{2}}-4t+1=0$$ Clearly, it is a quadratic equation in $$t$$. Now, we will solve this quadratic equation by factorisation method. $$3{{t}^{2}}-4t+1=0$$ $$\Rightarrow 3{{t}^{2}}-3t-t+1=0$$ $$\Rightarrow 3t(t-1)-1(t-1)=0$$ $$\Rightarrow (3t-1)(t-1)=0$$ $$\Rightarrow t=\dfrac{1}{3}$$or $$t=1$$ Hence , the values of $$t$$ for $$\dfrac{dy}{dx}$$ to be equal to $$\dfrac{1}{2}$$ are $$\dfrac{1}{3}$$ and $$1$$. Answers are options (D), (A). Note: $$3{{t}^{2}}-4t+1=0$$ can alternatively be solved using the quadratic formula. We know, for a quadratic equation given by $$a{{x}^{2}}+bx+c=0$$, the values of $$x$$ satisfying the equation are known as the roots of the equation and are given by $$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$$ . So , $$t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}$$ $$\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}$$ $$\Rightarrow t=\dfrac{4\pm 2}{6}$$ $$\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}$$ $$\Rightarrow t=1,\dfrac{1}{3}$$ Hence, the values of $$t$$ satisfying the equation $$3{{t}^{2}}-4t+1=0$$ are $$t=1,\dfrac{1}{3}$$.