Solveeit Logo

Question

Question: A current of A is maintained in a circular loop of radius 14 cm. The value of dipole moment associat...

A current of A is maintained in a circular loop of radius 14 cm. The value of dipole moment associated with the loop is

Answer

0.0616A A m^2

Explanation

Solution

The magnetic dipole moment (μ\mu) of a current loop is given by the formula μ=NIA\mu = NIA, where NN is the number of turns, II is the current, and AA is the area of the loop.

  1. Identify given values:

    • The current is given as I=AI = A Amperes.
    • The loop is circular, so the number of turns N=1N=1.
    • The radius of the loop is R=14R = 14 cm.
  2. Convert units: Convert the radius from centimeters to meters: R=14 cm=14×102 m=0.14 mR = 14 \text{ cm} = 14 \times 10^{-2} \text{ m} = 0.14 \text{ m}.

  3. Calculate the area of the loop: The area of a circular loop is Aloop=πR2A_{loop} = \pi R^2. Aloop=π(0.14 m)2=π(0.0196) m2A_{loop} = \pi (0.14 \text{ m})^2 = \pi (0.0196) \text{ m}^2.

  4. Calculate the magnetic dipole moment: Substitute the values into the formula μ=NIA\mu = NIA. μ=1×A×(0.0196π) A m2\mu = 1 \times A \times (0.0196\pi) \text{ A m}^2. μ=0.0196πA A m2\mu = 0.0196\pi A \text{ A m}^2.

  5. Approximate using π227\pi \approx \frac{22}{7}: μ=0.0196×227×A A m2\mu = 0.0196 \times \frac{22}{7} \times A \text{ A m}^2. μ=(0.0028×22)×A A m2\mu = (0.0028 \times 22) \times A \text{ A m}^2. μ=0.0616A A m2\mu = 0.0616A \text{ A m}^2.

The value of the dipole moment associated with the loop is 0.0616A A m20.0616A \text{ A m}^2.