Solveeit Logo

Question

Question: A current of 1A is flowing on the side of an equilateral triangle of side \[4.5\times {{10}^{-2}}m\]...

A current of 1A is flowing on the side of an equilateral triangle of side 4.5×102m4.5\times {{10}^{-2}}m. The magnetic field at the centre of the triangle will be:
A) 4×105Wb/m24\times {{10}^{-5}} {Wb}/m^2
B) ZeroZero
C) 2×105Wb/m22\times {{10}^{-5}} {Wb}/m^2
D) 8×105Wb/m28\times {{10}^{-5}} {Wb}/m^2

Explanation

Solution

Magnetic field due to current carrying conductor (wire) is, B=μ0i4πr(sinϕ1+sinϕ2)B=\dfrac{{{\mu }_{0}}i}{4\pi r}\left( \sin {{\phi }_{1}}+\sin {{\phi }_{2}} \right).
Where r is the perpendicular distance from the wire of that point,
ϕ1{{\phi }_{1}} and ϕ2{{\phi }_{2}} are angles.

Complete step by step solution:
When a current flows in a conductor or wire then produces a magnetic field around it. The magnetic field lines shape depend on the shape of the current carrying conductor. If the conductor is in the shape of a cylinder, then the magnetic field lines are circular around the wire (cylinder shape).
The magnetic field due to a finite conducting wire,
B=μ0i4πr(sinϕ1+sinϕ2)B=\dfrac{{{\mu }_{0}}i}{4\pi r}\left( \sin {{\phi }_{1}}+\sin {{\phi }_{2}} \right)
Where r is the perpendicular distance from the wire of that point,
ϕ1{{\phi }_{1}} and ϕ2{{\phi }_{2}} are the angels.
For equilateral triangle
ϕ1=ϕ2=60{{\phi }_{1}}={{\phi }_{2}}={{60}^{\circ }}
tan30=r2.25×102\Rightarrow \tan 30{}^\circ =\dfrac{r}{2.25\times {{10}^{-2}}}

r=2.25×102×tan30r=2.25\times {{10}^{-2}}\times \tan 30{}^\circ
r=2.25×102×13m\Rightarrow r=2.25\times {{10}^{-2}} \times \dfrac{1}{\sqrt{3}}m
Magnetic field at the centre of the triangle due side AB,
\Rightarrow B1=μ0i4πr(sinϕ1+sinϕ2){{B}_{1}}=\dfrac{{{\mu }_{0}}i}{4\pi r}\left( \sin {{\phi }_{1}}+\sin {{\phi }_{2}} \right)
Direction of the magnetic field above the plane
Magnetic field is same due to side BC and CA and direction also same,
So resultant magnetic field
B=3B1=3μ0i4πr(sinϕ1+sinϕ2)B=3{{B}_{1}}=3\dfrac{{{\mu }_{0}}i}{4\pi r}\left( \sin {{\phi }_{1}}+\sin {{\phi }_{2}} \right)
ϕ1=ϕ2=60\because {{\phi }_{1}}={{\phi }_{2}}={{60}^{\circ }}
B=3×μ0i4πr(sin60+sin60)\Rightarrow B=3\times \dfrac{{{\mu }_{0}}i}{4\pi r}\left( \sin {{60}^{\circ }}+\sin {{60}^{\circ }} \right)
B=3×μ0i4πr(32+32)\Rightarrow B=3\times \dfrac{{{\mu }_{0}}i}{4\pi r}\left( \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2} \right)
B=3×107×12.25×1023(3+32)\Rightarrow B=3\times {{10}^{-7}}\times \dfrac{1}{\dfrac{2.25\times {{10}^{-2}}}{\sqrt{3}}}\left( \dfrac{\sqrt{3}+\sqrt{3}}{2} \right)
B=3×107×32.25×102\Rightarrow B=\dfrac{\sqrt{3}\times {{10}^{-7}}\times \sqrt{3}}{2.25\times {{10}^{-2}}}
B=9×1072.25×102\Rightarrow B=\dfrac{9\times {{10}^{-7}}}{2.25\times {{10}^{-2}}}
B=4×105\Rightarrow B=4\times {{10}^{-5}} Weber/(meter)2{Weber}/{{{\left( meter \right)}^{2}}}

Note: When we find out the magnetic field at the centre, then maximum times we take the distance from the corner but really. We should take a perpendicular distance from the write to that point.