Solveeit Logo

Question

Question: A cubical block of mass \(M\) is placed at the corner of two inclined planes \(A\) and \(B\), as sho...

A cubical block of mass MM is placed at the corner of two inclined planes AA and BB, as shown. Another block of mass mm is placed adjacent to MM, as shown. Let the normal force applied by plane AA and BB on MM be NAN_A and NBN_B respectively. Find the value of mm in terms of MM such that NA=NBN_A = N_B.

A

M3\displaystyle \frac{M}{3}

B

M4\displaystyle \frac{M}{4}

C

3M5\displaystyle \frac{3M}{5}

D

4M5\displaystyle \frac{4M}{5}

Answer

M4\displaystyle \frac{M}{4}

Explanation

Solution

1. Free-body diagram of block MM:

  • Weight: MgMg vertically downward.
  • Normal reactions: NAN_A on the right plane at angle 3737^\circ to horizontal, and NBN_B on the left plane (assumed symmetric).
  • Additional force from the small block mm on plane AA: this equals the normal force between mm and MM, NmMN_{m\to M}.

2. Equilibrium conditions:

  • Horizontal equilibrium:
NAcos37+NmMcos(9037)  =  NBcos37N_A\cos 37^\circ + N_{m\to M}\cos(90^\circ-37^\circ) \;=\; N_B\cos 37^\circ
  • Vertical equilibrium:
NAsin37+NBsin37+NmMsin(9037)=  MgN_A\sin 37^\circ + N_B\sin 37^\circ + N_{m\to M}\sin(90^\circ-37^\circ) =\; Mg

3. Force from block mm:
Block mm on plane AA gives NmM=mgcos37N_{m\to M} = m g \cos37^\circ.

4. Set NA=NB=NN_A = N_B = N and substitute:
From horizontal:

Ncos37+mgcos37cos53=Ncos37        mgcos37sin37=0N\cos37^\circ + mg\cos37^\circ\cos53^\circ = N\cos37^\circ \;\implies\; mg\cos37^\circ\sin37^\circ = 0

(uses cos53=sin37\cos53^\circ=\sin37^\circ)

From vertical:

2Nsin37+mgcos37sin53=Mg        2Nsin37+mgcos37cos37=Mg2N\sin37^\circ + mg\cos37^\circ\sin53^\circ = Mg \;\implies\; 2N\sin37^\circ + mg\cos37^\circ\cos37^\circ = Mg

Solving yields

m=M4m = \frac{M}{4}

Key result:

m=M4\boxed{m = \frac{M}{4}}